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Here we present further information on the equations of motion for thermodynamic and

moisture variables used in SAM and how these equations are modified when we omit pre-

cipitating water as a prognostic variable following the approach in Yuval and O’Gorman

(2020) hereinafter referred to as YOG20 (text S1). We also describe the training data,

training procedure and architecture of the neural networks (NNs) and their implemen-

tation in SAM (text S2), we show that the NN parameterization conserves the frozen
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moist static energy (text S3), and we compare the offline performance of the NN and RF

parameterizations (text S4).

Text S1. Equations of motion used for thermodynamic and moisture variables

The equations for these variables in SAM may be written as (Khairoutdinov & Randall,

2003)

∂hL

∂t
= − 1

ρ0

∂

∂xi
(ρ0uihL + FhLi)−

1

ρ0

∂
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rad , (S1)
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∂qp
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∂xi
(ρ0uiqp + Fqpi) +
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ρ0

∂

∂z
(Ptot)− (qT)tend

mic , (S3)

where hL is the liquid/ice water static energy (= cpT + gz−Lc(qc + qr)−Ls(qi + qs + qg),

and qc, qi, qr, qs and qg are mixing ratios of cloud water, cloud ice, rain, snow and

graupel, respectively); qp is the total precipitating water (rain + graupel + snow) mixing

ratio; qT is the non-precipitating water (water vapor + cloud water + cloud ice) mixing

ratio; ρ0(z) is the reference density profile; ui = (u, v, w) is the three-dimensional wind;

FBi is the diffusive flux of variable B; Ptot is the precipitation mass flux (due to rain,

graupel and snow); S is the sedimentation mass flux; (hL)tend
rad is the tendency due to

radiative heating; (qT)tend
mic is the non-precipitating water mixing ratio tendency due to

autoconversion, collection, aggregation, evaporation and sublimation of precipitation. Lc,

Lf and Ls are the latent heat of condensation, fusion and sublimation, respectively; Lp =

Lc + Lf(1− ωp) is the effective latent heat associated with precipitation, where ωp is the

precipitation partition function determining the ratio between ice and liquid phases.
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The precipitating water mixing ratio qp is a variable that varies on short time scales

and is often not used as a prognostic variable in climate models, which typically have

a coarser grid and larger time step than the high-resolution simulation. Therefore, we

do not include qp in the NN parameterization scheme that is presented in this study to

make our results more generally applicable. Following YOG20, we define a new prognostic

energy variable (HL) that does not include the precipitating water (qp):

HL = cpT + gz − Lcqc − Lsqi, (S4)

Neglecting variations of Lp in the horizontal and in time (which are small compared to

the vertical variations in Lp), allows us to write the prognostic equation for HL as

∂HL

∂t
= − 1

ρ0

∂

∂xi
(ρ0uiHL)− 1

ρ0

∂

∂z
(LsS)− Lp(qT)tend

mic + (hL)tend
rad

− 1

ρ0

∂FHLi

∂xi
+

1

ρ0

∂Lp

∂z
(ρ0wqp + Fqpz − Ptot) (S5)

where FHLi = FhLi +LpFqpi, and the last term on the right hand side results from heating

due to phase changes of precipitation. We define the sum of the total radiative heating and

the heating from phase changes of precipitation as (HL)tend
rad−phase = (hL)tend

rad + 1
ρ0

∂Lp

∂z
(ρ0wqp+

Fqpz − Ptot).

To find an expression for surface precipitation we assume that at coarse resolution (when

the NN parameterization is used) we can neglect surface diffusive and horizontal fluxes of

qp and the time derivative of qp in Equation (S3). Using these assumptions and vertically

integrating Equation (S3) over the column gives an expression for the surface precipitation

rate due to rain, graupel and snow:

Ptot(z = 0) =

∫ ∞
0

ρ0(qT)tend
mic dz. (S6)
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Following conventions used in SAM, we add any sedimentation at the surface to the surface

precipitation rate and the total surface precipitation rate is calculated as:

Ptot(z = 0) + S(z = 0) =

∫ ∞
0

ρ0(qT)tend
mic dz + (qT)subg−flux

sed (z = 0) + Sresolved(z = 0), (S7)

where Sresolved(z = 0) is calculated online using resolved fields in SAM.

Text S2. Training and implementation

The data set for the NN parameterization is obtained from 337.5 days of 3-hourly

snapshots of model output taken from the hi-res simulation. This data was split into train

and test datasets, where the first 320.625 days (95% of the data) were used for training,

and the last 16.875 days (5% of the data) were used as a test dataset. To easily upload

all data into the RAM during the training procedure, and to decrease the correlation

between different training samples for each 3-hourly snapshot that was used, we reduced

the training data set size for the coarse-graining factor of x8 by randomly subsampling

30 (out of 72) atmospheric columns at each latitude for each snapshot. This results in

training dataset size of 13, 856, 040, where a sample is defined as an individual atmospheric

column for a given horizontal location and time step. When using a coarse-graining factor

of x16, we use all 36 longitudinal grid points at each latitude, giving 8, 313, 660 training

samples. We note that the split to train and test datasets is slightly different compared

to YOG20 where we used 10% of the data as a test dataset.

The NNs training is implemented in Python using PyTorch (Paszke et al., 2017). The

NNs weights and biases are optimized by the Adam optimizer (Kingma & Ba, 2014)

combined with a cyclic learning rate (Smith, 2017). We use 1024 samples in each batch
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and train over 8000 batches before completing a full cycle in the learning rate. We use 12

epochs, where the first seven epochs are trained with a minimal learning rate of 0.0002

and a maximal learning rate of 0.002, and five additional epochs are trained after reducing

both the minimum and maximum learning rates by a factor of 10. We did a learning rate

range test (Smith, 2017) before training and after seven epochs to find optimal learning

rates. The NNs are stored as netcdf files, and then implemented in SAM using a Fortran

module. The results presented in this work are for NNs with 128 nodes at each hidden

layer and rectified linear unit activations (ReLu) except in the output layer where no

activation function was used. Unless stated differently, NNs have five densely connected

layers. Training typically takes 20 minutes when using 10 CPU cores. We note that we do

not use batch normalization (Ioffe & Szegedy, 2015) since it leads to unstable simulations.

The reason that using batch normalization leads to unstable simulations is that some

neurons have vanishingly small variance, which leads to divergence of prognostic fields,

typically within very few time steps.

Prior to training, each input (feature) of both NNs were standardized by removing

the mean and rescaling to unit variance. The outputs of NN2 were standardized in a

similar way, except that for the diffusivity the mean and variance were calculated across

all 15 vertical levels. A different approach was used for the outputs of NN1 in order

to weight the effects of the different tendencies and fluxes consistently. We first define

for each training sample and subgrid process the equivalent tendencies at all vertical

levels associated with the fluxes by calculating tendencies due to the predicted fluxes.

We then multiplied all qT tendencies by Lc such that all tendencies have units of J s−1.



X - 6 :

Next, we calculated the variance of each of the tendencies associated with each of the

outputs (variance was calculated across all 30 levels of each process). We normalized

these variances by the variance of (HL)tend
rad−phase which had the smallest variance. The

resulting normalized variances were 3.29 for (HL)subg−flux
adv , 22.30 for (qT)subg−flux

adv , 14.93 for

(qT)tend
mic , 2.26 for (qT)subg−flux

sed and 1.00 for (HL)tend
rad−phase. Finally, the outputs of NN1 were

standardized by removing the mean and rescaling to the normalized variances listed above.

This output normalization weights each output such that it is proportional to its effect on

the prognostic variables. In the reduced precision simulations, we reduce the precision of

NN scaled inputs and scaled (direct) outputs, but we do not reduce the precision of these

means and scaling factors.

Text S3. Conservation of frozen moist static energy

We define the frozen moist static energy (FMSE; Kuang and Bretherton (2006)) as

FMSE = HL + LcqT = cpT + gz + Lcqv − Lfqi, (S8)

where qv is the mixing ratio of water vapor and all other variables are defined in text S1.

To get an evolution equation for the column integrated FMSE we multiply equation S2

by the latent heat of condensation, then sum the multiplied equation with equation S5,
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and integrate this sum in the vertical with density weighting which gives

∂

∂t

∫ ∞
0

ρ0(LcqT +HL)dz = (LcFqTz + FHLz)(z = 0)

+ LfS(z = 0)

+

∫ ∞
0

ρ0(HL)tend
rad−phasedz

−
∫ ∞

0

ρ0(1− ωp)Lf(qT)tend
mic dz

−
∫ ∞

0

Lc∇h · (ρ0uhqT + FqTh) +∇h · (ρ0uhHL + FHLh)dz (S9)

where the subscript h refers to the two horizontal coordinates. The terms in the right hand

side of equation S9 represent FMSE tendencies due to: (1) surface turbulent fluxes, (2)

the latent heat of fusion when ice sediments reach the surface, (3) radiative heating and

heating from phase changes of precipitation, (4) the latent heat of fusion when condensate

is converted to graupel or snow, and (5) horizontal advection and horizontal diffusion.

The derivation of equation S9 is unaffected by the presence of the NN parameterization

because: (1) the NN parameterization predicts vertical advective fluxes rather than their

associated tendencies and these fluxes are set to zero at the lower boundary, (2) the NN

parameterization predicts the diffusivity instead of diffusive tendencies, and (3) the NN

parameterization uses equations 4 and 5 in the main paper to diagnose the subgrid fluxes

or tendencies of HL due to sedimentation and cloud microphysics. The NN parameteri-

zation does not affect the horizontal fluxes. We thus conclude from equation S9 that the

NN parameterization conserves the column integrated FMSE in the absence of radiative

heating, heating from phase changes of precipitation, surface turbulent fluxes, conversion

of condensate to graupel or snow and sedimentation that reaches the surface.
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Text S4. Offline comparison between random-forest parameterization and

neural-network parameterization

Overall, the input and output structures of the NN and RF parameterizations have

similarities, though several important differences exist. The inputs for RF-tend (which

is analogous to NN1) are similar, except that in RF-tend all 48 vertical levels are used

as inputs. Furthermore, RF-tend predicts the net tendency summed over all processes

included in NN1 of HL and qT at all 48 vertical levels (with the exception that radiative

heating was predicted up to z = 11.8km), rather than predicting separate fluxes or ten-

dencies for different physical processes. As a test, we also tried to use NN1 with a similar

input and output structure to RF-tend and thus have it predict the net tendency over all

processes rather than separate fluxes and sinks for each process. However, this approach

does not ensure physical consistency in an NN parameterization (see section 3.2 of the

main paper) unlike an RF which predict averages over training samples and thus auto-

matically conserves energy. Although the simulation in this test was stable, the quality

of online results varied substantially when different grid spacings were used. Future work

could further compare two identical structures of RFs and NNs. Further details about

RF-tend can be found in the supplementary information of YOG20.

NN2 and RF-diff have the same unscaled outputs and their offline results can be easily

compared directly. To compare the offline results between RF-tend and NN1 we use the

unscaled tendencies of HL and qT as calculated from the outputs predicted by NN1, such

that we compare the same target values. Offline performance is measured here as the

coefficient of determination (R2) as applied to the test dataset. We find that the NN
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parameterization outperforms the RF parameterization across all variables (Figure S4).

To give a better intuition for the offline performance of the NN parameterization, the

predictions and true values for qT tendencies for specific columns and times are shown in

Figure S5.

The RF and NN parameterizations have some differences in their test (text S2) and

train datasets. Since the RF parameterization requires more memory during training,

we used less training samples (5,000,000 for x8-RF compared to 13,856,040 for x8-NN).

Using the same number of samples as in the NN lead to memory errors when training on

nodes with 108Gb of random-access memory. Since the R2 of the RF parameterization is

roughly constant when increasing the number of training samples above 5,000,000 (Fig. S8

in YOG20), it is unlikely that adding more samples would substantially change the offline

result of RF parameterization.
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Figure S1. (a) Zonal- and time-mean precipitation rate as a function of latitude and (b)

frequency distribution of 3-hourly precipitation rate for coarse-resolution simulations with the

default NN parameterization which uses distance to the equator as an input feature (x8-NN;

orange dash-dotted) and an alternative NN parameterization that instead uses top of atmosphere

insolation as an input feature (x8-NN-insol; red).
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Figure S2. (a) Zonal- and time-mean precipitation rate as a function of latitude and (b)

frequency distribution of 3-hourly precipitation rate for the coarse-resolution simulation with the

NN parameterization using 5 layers which is the default NN used in the paper (x8-NN; orange

dash-dotted), 4 layers (x8-NN-4L; red), 3 layers (x8-NN-3L; purple) and 2 layers (x8-NN-2L;

purple). All networks were trained with the same protocol and learning rates.
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Figure S3. (a) Zonal- and time-mean precipitation rate as a function of latitude and (b)

frequency distribution of 3-hourly precipitation rate for the high-resolution simulation (hi-res;

blue), the coarse-resolution simulation at 192km horizontal grid spacing without the NN pa-

rameterization (x16; green) and with the NN parameterization (x16-NN; orange dash-dotted).

For hi-res, the precipitation is coarse-grained to the grid spacing of x16 prior to calculating the

frequency distribution.
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Figure S4. Coefficient of determination (R2) for offline performance of the x8-NN and x8-RF

parameterizations for the (a) subgrid tendency of non-precipitating water mixing ratio (qT) as

a function of pressure, (b) subgrid tendency of liquid/ice water static stability energy (HL) as

function of pressure, (c) subgrid surface energy flux as a function of latitude, (d) subgrid surface

moisture flux as a function of latitude, (e-f) diffusivity as a function of latitude and pressure for

the (e) NN and (f) RF. In panels a-d orange dash-dotted lines show results for NN and black

lines show results for RF. R2 is calculated based on the samples from the test datasets.
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Figure S5. The true (green) and NN1 predicted (orange dash dotted) subgrid tendency of

non-precipitating water mixing ratio (qT; tendency calculated from the sum of subgrid verti-

cal advection, sedimentation and microphysics) as a function of pressure for randomly chosen

columns and times.
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R2 relative to hi-res R2 relative to x8-NN
x8 x8-RF x8-NN x8-NN-7bits x8-NN-5bits x8-NN-3bits x8-NN-1bits

Eddy kinetic energy 0.88 0.97 0.94 0.99 0.99 0.99 0.30
Zonal wind 0.87 0.98 0.93 0.99 0.99 0.99 0.70
Meridional wind -0.01 0.87 0.80 0.98 0.99 0.95 0.78
Non-precipitating water 0.97 0.99 0.99 0.99 0.99 0.99 0.98
Precipitation -3.47 0.92 0.88 0.94 0.99 0.86 0.79
Precip. frequency dist. 0.35 0.98 0.99 0.99 0.99 0.99 0.95

Table S1. Online performance as measured by the coefficient of determination (R2) of the

time- and zonal-mean of eddy kinetic energy, zonal wind, meridional wind, non-precipitating

water, precipitation, and of the frequency distribution of 3-hourly precipitation. R2 is calculated

relative to hi-res for the coarse-resolution simulation with no ML parameterization (x8), with

the RF parameterization (x8-RF) and with the NN parameterization (x8-NN). R2 is calculated

relative to x8-NN for the simulations with reduced-precision parameterizations with 7 (x8-NN-

7bits), 5 (x8-NN-5bits), 3 (x8-NN-3bits) and 1 (x8-NN-1bits) bits in the mantissa. The eddy

kinetic energy is defined with respect to the zonal and time mean. x8-NN-7bits corresponds to the

bfloat16 half-precision format which has 7 bits in the mantissa, and the default parameterization

(x8-NN) is single precision which has 23 bits in the mantissa. For hi-res, the precipitation is

coarse-grained to the grid spacing of x8 prior to calculating the frequency distribution.
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(HL)subg−flux
adv (qT)subg−flux

adv (qT)subg−flux
sed (qT)tend

mic (HL)tend
rad−phase

x8-NN-2L 0.60 0.64 0.69 0.68 0.65
x8-NN-3L 0.63 0.67 0.79 0.78 0.77
x8-NN-4L 0.63 0.68 0.80 0.79 0.80
x8-NN (5L) 0.64 0.68 0.81 0.79 0.79
x16-NN (5L) 0.71 0.80 0.85 0.81 0.83

Table S2. Offline performance of NN1 as measured by R2 for different NN architectures and

coarse-graining factors. The offline performance is given for different outputs for NNs with 2,3,4

and 5 layers at x8 resolution (x8-NN-2L, x8-NN-3L, x8-NN-4L, x8-NN, respectively), and for 5

layers at x16 resolution (x16-NN). Note that x8-NN and x16-NN use the default of 5 layers. All

vertical levels used are included when calculating R2. All results are based on the test dataset.


