
1. Introduction
Traditional parameterizations in general circulation models (GCMs) rely on simplified physical models and 
suffer from inaccuracies which lead to model biases and large uncertainties in climate projections (Bony & 
Dufresne, 2005; Oueslati & Bellon, 2015; O'Gorman, 2012; Schneider et al., 2017; Wilcox & Donner, 2007). 
One alternative to traditional parameterizations is to use machine learning (ML) algorithms to create new 
subgrid parameterizations (Bolton & Zanna, 2019; Brenowitz & Bretherton, 2018, 2019; Gentine et al., 2018; 
Han et al., 2020; Krasnopolsky et al., 2013; O'Gorman & Dwyer, 2018; Rasp et al., 2018; Yuval & O'Gor-
man, 2020; Zanna & Bolton, 2020).

Two ML algorithms that have been used for climate-model parameterizations are neural networks (NNs) 
and random forests (RFs). An RF is an ensemble learning algorithm that is composed of several decision 
trees (Breiman, 2001). O'Gorman and Dwyer (2018) trained an RF to emulate a conventional convection 
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scheme of an atmospheric GCM and showed that when this RF parameterization is implemented in the 
GCM it leads to stable simulations that reproduce its climate, and the use of an RF allowed physical con-
straints, such as energy conservation and non-negative surface precipitation, to be respected. More recently, 
Yuval and O'Gorman (2020) (hereinafter referred to as YOG20) learned an RF parameterization from output 
of a three-dimensional high-resolution idealized atmospheric model. The parameterization led to stable 
simulations that replicate the climate of the high-resolution simulations at several coarse resolutions.

Despite the success of RFs in these cases, NNs have some computational advantages over RFs such as 
the possibility of greater accuracy and needing substantially less memory when implemented. Further-
more, an NN parameterization could potentially be implemented at reduced precision in graphics process-
ing units (GPUs), tensor processing units (TPUs), and even in central processing units (CPUs; Vanhoucke 
et al., 2011) leading to very efficient parameterizations. For example, modern hardware developments that 
use half precision (16-bit) arithmetic on recent generation NVidia A100 GPU devices (Nvidia, 2020) allow 
up to 64 times the peak compute performance, compared to 64-bit arithmetic. Although this is based on 
theoretical peak numbers, a first exascale application in Earth science has already been realized for image 
classification based on GPU technology with 16-bit arithmethic (Kurth et al., 2018). Google TPUv3 devices 
(Jouppi et al., 2020) have similarly optimized capability, for reduced precision floating point arithmetic to 
support deep learning applications. Furthermore, previous studies have found that using deep NNs with 
half-precision multipliers has little effect on accuracy when used for classification (Courbariaux et al., 2014; 
Das et al., 2018; Micikevicius et al., 2017; Miyashita et al., 2016). For regression tasks, which are needed for 
parameterizations, a reduced-precision NN might not be as accurate as a full-precision NN, but it has been 
argued that the dynamics at small horizontal length scales represented by parameterizations does not need 
the same level of precision as for large-scale dynamics because of the unpredictable and stochastic nature of 
the small-scale flow (Palmer, 2014). Indeed, use of reduced precision in parts of weather or climate models 
has already been proposed as a way to increase the speed of simulations and reduce their energy cost (Dü-
ben & Palmer, 2014; Düben et al., 2014, 2017; Hatfield et al., 2019; Saffin et al., 2020).

NN parameterizations have shown considerable potential, but they have also suffered from instability and 
climate drift when used in GCMs. For example, Rasp et al. (2018) developed NN parameterizations based 
on the super parametrized community atmosphere model (SPCAM) and found they are often unstable 
when coupled dynamically to a GCM. Rasp et al. (2018) were able to acheive a stable simulation with an 
NN parameterization, but they found that small changes to the configuration led to blow ups in the simula-
tions (Rasp, 2020). Furthermore, when they quadrupled the number of embedded cloud-resolving columns 
(from 8 to 32) within each coarse-grid cell of SPCAM they found that instabilities returned (Brenowitz 
et al., 2020). Brenowitz and Bretherton (2018, 2019) learned an NN parameterization in a near-global cloud 
system resolving model (CRM) and were able to deal with instabilities by removing the upper-atmospheric 
humidity and temperature from the input space and by using a training cost function that takes into account 
the predictions from several forward time steps. Although these changes in the learning structure led to 
stable simulations at coarse resolution with the NN parameterization, the climates of these simulations 
drifted on longer time scales and were not accurate. Brenowitz et al.  (2020) found using linear stability 
analysis of NN predictions coupled to simplified dynamics that instability occurs when GCMs are coupled 
to NNs that support unstable gravity waves with certain phase speeds. A study by Ott et al. (2020) tested 
the stability of simulations coupled to more than a hundred different NNs and found a correlation between 
offline performance (i.e., the quality of predictions from NNs when they are not coupled to a GCM) and how 
long simulations run before they blow up, with some accurate NNs leading to fully stable simulations. These 
results suggest that an exhaustive hyperparameter tuning might be necessary in order to achieve stability in 
GCM simulations that are coupled to NNs.

RFs might be more stable than NNs since their predictions for any given input are averages over samples in 
the training data set, and thus they can automatically satisfy physical constraints such as linear energy con-
servation (O'Gorman & Dwyer, 2018, YOG20) and make conservative predictions for samples outside of the 
training data (NNs can also be forced to satisfy analytic constraints [Beucler et al., 2019], but such NNs have 
not yet been coupled to a GCM). However, the RFs and NNs in the studies mentioned above used different 
training data sets and processed the high-resolution data differently to calculate subgrid terms. Therefore, 
it is difficult to determine if the stability arises from the different processing of the high-resolution model 
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output or due to the different properties of RFs compared to NNs. The two main differences in the data 
processing between YOG20 and the NNs studies mentioned above are that (1) the subgrid corrections were 
calculated accurately for the instantaneous atmospheric state (YOG20) rather than approximating them 
based on differences over 3-h periods (Brenowitz & Bretherton, 2018, 2019) or predicting the integrated 
effect of subgrid processes over a 30 min time step (Rasp et al., 2018), and that (2) the subgrid corrections 
were calculated independently for each physical process (YOG20) rather than for the combined effect of 
several processes (Brenowitz & Bretherton, 2018, 2019; Rasp et al., 2018).

Here, we learn an NN parameterization with a physically consistent structure using the same accurate 
data processing that was used to learn an RF parameterization in YOG20. We show that implementing this 
parameterization in the same model at coarse resolution leads to stable simulations with a climatology that 
resembles the one obtained from a high-resolution simulation, and we compare the performance of an NN 
parameterization to the performance of an RF parameterization. We also test how the simulated climate is 
affected when reducing the precision of the inputs and outputs of the NN parameterization.

We first describe the high-resolution simulation from which the training data was calculated and how this 
data was coarse-grained (Section 2). We then describe the structure of the NN parameterization and explain 
how this structure ensures that NN parameterization is consistent with several physical properties (Sec-
tion 3). We compare simulations using the NN parameterization to the high-resolution simulation and to 
a simulation with an RF parameterization, and we investigate the dependence of climate on the numerical 
precision of the NN parameterization (Section 4). Finally, we give our conclusions (Section 5).

2. Methods
2.1. Simulations

All simulations were run on a quasi-global aquaplanet configured as an equatorial beta-plane using the 
System for Atmospheric Modeling (SAM) version 6.3 (Khairoutdinov & Randall, 2003). The domain has 
zonal width of 6, 912 km and meridional extent of 17, 280 km. The distribution of sea surface temperature 
(SST) is specified to be the qobs SST distribution (Neale & Hoskins, 2000), which is zonally and hemispher-
ically symmetric and reaches its maximal value of 300.15 K at the equator and decreases to 273.15 K at 
the poleward boundaries. There are 48 vertical levels. We use hypohydrostatic rescaling of the equations 
of motion with a scaling factor of 4, which increases the horizontal length scale of convection and allows 
us to use a horizontal grid spacing of 12 km for the high-resolution simulation (referred to as hi-res) while 
resolving deep convection and simulating planetary scale circulations in the same quasi global simulation 
(Boos et al., 2016; Fedorov et al., 2019; Garner et al., 2007; Kuang et al., 2005; Pauluis & Garner, 2006). The 
hi-res simulation is the same simulation that was used for training in YOG20. Further details of the model 
configuration are given in YOG20.

In addition to hi-res, we also consider simulations at horizontal grid spacings of 96 and 192 km, which will 
be referred to as x8 and x16, respectively, since they correspond to coarser grid spacings by factors of 8 and 
16, respectively. We ran a simulation at 96 km horizontal grid spacing without an NN parameterization (x8), 
several simulations at 96 km horizontal grid spacing with an NN parameterization (x8-NN, variants of this 
simulation are described in the text below), and simulations at 192 km horizontal grid spacing with (x16-
NN) and without (x16) an NN parameterization. All simulations were run for 600 days. The first 100 days 
are considered as spin up, and the presented results are taken from the last 500 days of each simulation. 
Simulations with the NN parameterization start with initial conditions taken from the last time step of the 
simulations without the NN parameterization at the same resolution.

2.2. Coarse-Graining and Calculation of Subgrid Terms

The NN parameterization aims to account for unresolved processes that act in the vertical and affect ther-
modynamic and moisture prognostic variables. There are three thermodynamic and moisture prognostic 
variables in SAM (Khairoutdinov & Randall, 2003): liquid-ice static energy hL, total nonprecipitating water 
mixing ratio qT, and precipitating water mixing ratio qp. Since qp is a variable that varies on short time scales 
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that are not typically resolved in climate models, we do not include qp in the NN parameterization scheme 
following the “alternative” parameterization approach in YOG20. Consequently, we reformulate the equa-
tions of motion and define a different thermodynamic energy variable (HL) that does not include the energy 
associated with precipitating water (Text S1).

For each 3-hourly snapshot from hi-res, we coarse grain the prognostic variables (u, v, w, HL, qT, qp, where 
u, v, w are the zonal, meridional, and vertical wind, respectively), vertical advective fluxes, sedimentation 
fluxes, surface turbulent fluxes, tendency of nonprecipitating water mixing ratio due to cloud microphysics, 
turbulent diffusivity, radiative heating and temperature. Coarse-graining is performed by a simple spatial 
averaging as in YOG20 to horizontal grid spacings of 96 km (x8) and 192 km (x16).

We define the resolved flux of a given variable as the flux calculated using the dynamics and physics of 
SAM with the coarse-grained prognostic variables as inputs. The flux due to unresolved (subgrid) physical 
processes is calculated as the difference between the coarse-grained flux and the resolved flux. For example, 
the subgrid flux of HL due to vertical advection is calculated as

   


 
subg flux

L 0 L Ladv
,H wH wH (1)

where overbars denoted coarse-grained variables and ρ0(z) is the reference density profile. For each high-res-
olution snapshot, the coarse-grained prognostic fields are used to calculate the resolved vertical advective, 
sedimentation, and surface turbulent fluxes. The subgrid fluxes are then calculated by taking the difference 
between the coarse-grained and resolved fluxes.

3. Neural Network Parameterization
3.1. Parameterization Structure

The structure of the NN parameterization is broadly similar to the RF parameterization used in YOG20 
except that where possible we predict fluxes and sources and sinks (rather than net tendencies in YOG20) 
in order to incorporate physical constraints into the NN parameterization (Section 3.2). By contrast, for the 
RF parameterization in YOG20, it was sufficient to just predict net tendencies because the RF predicted av-
erages over subsamples of the training data set and thus automatically respected physical constraints such 
as energy conservation.

The NN parameterization is composed of two different NNs (Figure 1). The first NN, referred to as NN1, pre-

dicts the vertical profiles of the subgrid vertical advective fluxes of subg flux
L L adv(( ) )H H  and qT ( subg flux

T adv( )q ), 

the subgrid flux due to cloud ice sedimentation ( subg flux
T sed( )q ), the coarse-grained tendency of qT due to 

cloud microphysics ( tend
T mic( )q ), and the sum of the total radiative heating and the heating from phase changes 

of precipitation ( 
tend

L rad phase( )H , Text S1). Thus the outputs of NN1 are

  
 subg flux subg flux subg flux tend tend

NN1 L T T T mic L rad phaseadv adv sed(( ) ,( ) ,( ) ,( ) ,( ) ),Y H q q q H (2)

where the superscript subg-flux refers to subgrid fluxes and the superscript tend refers to the total tenden-
cy due to a process. The tendencies due to cloud microphysics, radiative heating and heating from phase 
changes of precipitation are treated as entirely subgrid. In the case of cloud microphysics and phase chang-
es of precipitation, this is because it is not possible to calculate the resolved values of these processes when 
qp is not used as a prognostic variable in the simulations (Text S1). Tendencies are predicted at the lowest 30 
“full” model levels (below z = 13.9 km), while subgrid ice sedimentation fluxes are predicted at the lowest 
30 “half” model levels, and vertical advective fluxes are predicted at the 29 “half” model levels above the 
surface (since advective fluxes are zero at the surface over ocean). Thus, NN1 has 29 × 2 + 30 × 3 = 148 
outputs. We do not use NN1 to predict outputs for levels above 13.9 km (≈134 hPa) since the NN parame-
terization is not accurate at these levels, we want to avoid predicting near the sponge layer which is active 
at heights above 20 km, and the predicted tendencies and subgrid fluxes are small above 13.9 km with the 
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exception of radiative heating. Above 13.9 km the subgrid fluxes and microphysical tendency are set to zero 
and the radiative heating tendencies calculated at coarse resolution from SAM are used.

The inputs for NN1 are the resolved vertical profiles of qT and temperature (T; the temperature is diagnosed 
from the coarse-grained prognostic variables ) at the lowest 30 full levels, as well as the distance to the equator 
(|y|, which is a proxy for insolation and surface albedo as both are only a function of |y| in our simulations), 
giving 30 × 2 + 1 = 61 inputs. We verified that using top of atmosphere insolation as input instead of the 
distance to equator does not change the results presented in this study (Figure S1). We found that using all 
48 levels of T and qT as inputs in NN1 leads to an instability, possibly related to instabilities found in previ-
ous studies when qp is not used a prognostic variable (Brenowitz & Bretherton, 2019; Brenowitz et al., 2020, 
YOG20). However, while Brenowitz and Bretherton (2019) and Brenowitz et al. (2020) removed some inputs 
above the mid-troposphere to achieve stability, we find it is sufficient to not use inputs in the stratosphere.

The second NN, referred to as NN2, predicts subgrid surface turbulent fluxes of HL and qT ( subg flux
L surf( )H  and 

subg flux
T surf( )q , respectively) and the coarse-grained vertical turbulent diffusivity (D) that is used for HL and 

qT. We only predict D in the lower troposphere (the 15 model levels below 5.7 km) because it decreases in 
magnitude with height (YOG20), and the diffusivity calculated at coarse resolution from SAM is used above 
5.7 km. Hence the outputs of NN2 are

  subg flux subg flux
NN2 L surf T surf( ,( ) ,( ) ),Y D H q (3)

giving 15 + 1 + 1 = 17 outputs. The inputs of NN2 are chosen to be the lower tropospheric vertical pro-
files of T, qT, u, v, surface wind speed (windsurf) and SST, so that XNN2 = (T, qT, u, v, windsurf, SST), giving 
4 × 15 + 1 + 1 = 62 features, where v in the southern hemisphere is multiplied by −1 when used as an input 
(see further discussion in YOG20).

The tendencies due to subgrid vertical advection, sedimentation and surface turbulence are calculated on-
line (i.e., when running SAM with the parameterization) from the predicted subgrid fluxes. For physical 
consistency, the subgrid energy flux due to ice sedimentation is also calculated online as

  subg flux subg flux
L s Tsed sed( ) ( ) ,H L q (4)

where Ls is the latent heat of sublimation. Similarly, the tendency of energy due to cloud microphysics is 
calculated online as
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Figure 1. Illustration of the parameterization structure. There are two different NNs included in the parameterization, 
each having its own inputs and outputs (full description in Section 3.1). Arrows indicate subgrid fluxes due to vertical 
advection and sedimentation, ellipses indicate tendencies associated with sources/sinks due to cloud microphysics, 
radiation and phase changes of precipitating water, and the wavy pattern indicates the coarse-grained diffusivity ( D ) 
which is predicted only at the lower 15 levels of the model. Blue (red) color indicates a variable, tendency or flux 
associated with moisture (energy). NN, neural network.
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 tend tend
L mic p T mic( ) ( ) ,H L q (5)

where Lp = Lc + Lf(1 − ωp) is the effective latent heat associated with precipitation (Lc and Lf are the latent 
heat of condensation and fusion, respectively, and ωp is the precipitation partition function determining the 
ratio between ice and liquid phases).

The results presented in the main paper are for NNs (both NN1 and NN2) with five layers (four hidden 
layers) with 128 nodes and rectified linear unit (ReLu) activation functions. Results for different NN archi-
tectures are shown in the supplementary information (Figure S2). More details about the train and test data 
sets, the NNs training protocol and how inputs and outputs are rescaled can be found in the supplementary 
information (Text S2)

When running simulations with the NN parameterization, we limit the predictions of qT fluxes and ten-
dencies such that we prevent qT from being assigned with negative values. More specifically, if the NN pa-
rameterization predicts any flux or any tendency at any vertical level that would lead to negative qT values 
if it acted on its own, we reduce this tendency or flux magnitude such that the minimal value that can be 
assigned to qT is zero. Removing this constraint (and allowing qT to be assigned with negative values) leads 
to a substantially different climate when the NN parameterization is used, although the simulations remain 
stable.

3.2. Physical Consistency of the Parameterization

Previous studies that used NN parameterizations usually predicted the sum of tendencies due to sever-
al different processes as a single output (Brenowitz & Bretherton, 2018, 2019; Gentine et al., 2018; Rasp 
et al., 2018). The coarse-graining and calculation of subgrid terms that is used in this study (Section 2.2) 
enables us to predict the effect of each process on the prognostic variables separately (Section 3.1), and 
where possible, the effect is diagnosed from other predicted outputs (Equations 4 and 5). Furthermore, the 
NN parameterization predicts fluxes instead of tendencies where possible. These differences make the NN 
parameterization presented in this study physically consistent in the following ways:

1.  Predicting the subgrid fluxes due to vertical advection instead of the subgrid tendencies guarantees 
energy and water are conserved by these fluxes. Similarly, predicting the flux due to sedimentation 
guarantees that changes in the energy of the atmospheric column due to sedimentation are only due to 
sedimentation that reaches the surface

2.  Changes in energy due to cloud microphysics and ice sedimentation are not predicted by the NN, but 
are instead diagnosed from Equations 4 and 5 (Figure 1). Diagnosing these changes guarantees that the 
sources or sinks of energy at each grid point due to cloud microphysics and sedimentation are consist-
ent with the amount of moisture that was subtracted or added at that grid point

3.  The NN predicts the coarse-grained vertical diffusivity (instead of predicting subgrid diffusive tenden-
cies or fluxes) which ensures that diffusive fluxes are downgradient and conserve energy and water in 
each atmospheric column

4.  The precipitation is diagnosed from the NN outputs (Text S1). Diagnosing the precipitation was not 
done in some previous studies that used NN parameterization in which the NN was used to predict 
precipitation directly (Rasp et al., 2018) or the NN outputs could only be used to predict the difference 
between precipitation minus evaporation (Brenowitz & Bretherton, 2019)

Properties a, b, and c ensure that the NN parameterization exactly conserves energy in the sense that the 
column integrated frozen moist static energy is conserved in the absence of radiative heating, heating from 
phase changes of precipitation, surface turbulent fluxes, and conversion of condensate to graupel or snow 
(see Text S3).

4. Results
4.1. Simulation with Neural-Network Parameterization

To assess the NN parameterization, we compare the climates of x8, x8-NN (using NNs with five fully con-
nected layers, Text S2) and hi-res. We focus on the zonal- and time-mean precipitation distribution (Fig-
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ure 2a) and the frequency distribution of the 3-h precipitation rate (Figure 2b). The frequency distribution 
is known to be sensitive to subgrid parameterization of moist convection (Wilcox & Donner, 2007), and 
the latitudinal distribution of mean precipitation is especially sensitive to subgrid parameterizations in the 
zonally and hemispherically symmetric aquaplanet configuration used here (Möbis & Stevens, 2012). The 
frequency distribution is estimated using 34 bins that are equally spaced in the logarithm of precipitation 
rate, where the lowest bin starts at 1 mm day−1, and the distribution is normalized such that it integrates to 
one when considering the whole distribution (including values lower than 1 mm day−1). The hi-res and x8-
NN simulations exhibit a similar double ITCZ structure, both in amplitude and in the latitudinal structure 
(Figure 2a). Note that the presence of a double ITCZ in hi-res is likely to be dependent on the exact domain 
and SST distribution. In contrast, the x8 simulation exhibits a single ITCZ (Figure 2a), highlighting the 
sensitivity of the tropical circulation to changes in the horizontal resolution and to the inclusion of the NN 
parameterization. Also the frequency distributions of precipitation in x8-NN closely matches that of hi-res 
(R2 = 0.99 as measured across bins), although x8-NN overestimates the extreme events, while the frequency 
distribution in x8 differ substantially from the distribution of hi-res (R2 = 0.35) especially for weak and ex-
treme precipitation events (Figure 2b). The NN parameterization also brings the zonal- and time-means of 
the zonal wind, meridional wind, eddy kinetic, and nonprecipitating water closer to the hi-res climatology, 
and outperforms the x8 simulation for these variables (Table S1).

We find that these results are reproduced when the NN1 architecture is changed to have only three or four 
layers (Figure S2), although the amplitude of the equatorial minimum of precipitation slightly varies be-
tween simulations. All the simulations we ran were stable and without climate drift, and even a substantial-
ly less accurate NN parameterization with two layers for NN1 (Table S2) leads to stable simulations, though 
it does not capture the precipitation distributions (Figure S2). When training an NN parameterizations for 
a coarse-graining factor of x16 and coupling it to a simulation with the corresponding grid spacing, similar 
results are obtained and precipitation distributions are captured correctly (Figure S3). Overall, we find that 
coupling an NN parameterization to a simulation at coarse-resolution leads to a climate that is similar to the 
hi-res climate, and that the stability of simulations is not sensitive to the NN architecture, hyperparameter 
tuning or the horizontal resolution of the simulations.

Several approximations where made when deriving the instantaneous precipitation rate (text S1). These 
approximations and inaccuracies in the NN predictions result in negative 3-h surface precipitation in 20% 
of samples in the x8-NN simulation. Nevertheless, almost all of the negative values are very small, and only 
0.03% of samples are less than −1 mm day−1.

4.2. Comparing Neural Network and Random Forest Parameterizations

In this section, we compare the offline and online performance of NN parameterization to the (“alterna-
tive”) RF parameterization that was developed in YOG20 and also did not include qp. For offline perfor-
mance (performance when not coupled to a GCM), we find that the NN parameterization outperforms the 
RF parameterization across all variables (Figure S4, Text S4), although the comparison is not straightfor-
ward since a different number of levels is used for input variables for RF and NN, and different outputs 
are predicted by the two parameterizations (Text S4). Yet, the online performance of the x8-NN and x8-RF 
simulations is comparable (Figures 2c and 2d and Table S1). Both x8-NN and x8-RF have a double ITCZ 
as in hi-res. The x8-NN simulation better captures the frequency distribution at most precipitation rates, 
though for extreme events x8-RF is more accurate (Figure 2d). Other climatological measures such as mean 
qT, meridional and zonal wind and eddy kinetic energy are better captured by x8-RF (Table S1).

One advantage of NN is that it requires less memory compared to RF. For example, for x8, NN1 is 0.3 MB and 
NN2 is 0.2 MB when stored in netcdf format at single precision, which is ≈1900 times less memory compared 
to the memory needed to store the RF parameterization. Another advantage of the NN parameterization is 
that the x8-NN simulation requires less CPU time than the x8-RF simulation by a factor of 1.25, although 
both require much less CPU time than hi-res (by a factor of 54 in the case of x8-NN). NN parametrizations 
could be even more efficient when used in climate models that run with GPUs since NN predictions involve 
matrix multiplications which are highly optimized and fast on GPUs.
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4.3. Reduced-Precision Parameterization

As discussed in the introduction, NN parameterizations run at reduced precision could bring considerable 
savings in speed and energy. To test the effect of reduced precision NNs, we run simulations in which the 
scaled inputs and outputs of the NNs are reduced in precision. Such simulations aim to check how precise 
the outputs and inputs have to be to give a similar climate to the full precision. In our default configuration, 
SAM and the NNs are evaluated in single precision which corresponds to 23 bits in the mantissa. We reduce 
the precision by rounding to 7,5, 3, and 1 bits in the mantissa and the resulting simulations are referred to 
as x8-NN-7bits, x8-NN-5bits, x8-NN-3bits, and x8-NN-1bits, while keeping the same number of bits in the 
exponent (8 bits). In all simulations we use the default NNs and we do not retrain these networks for differ-
ent precisions. Note that 7 bits in the mantissa corresponds to the bfloat16 “brain” floating-point (7 bits in 
the mantissa, 8 in the exponent and 1 to determine the sign) which is used in TPUs.

For x8-NN-7bits and x8-NN-5bits simulations we find that the resulting climate is similar, while reducing 
the precision to x8-NN-3bits leads to a small degradation and keeping only 1 bit in the mantissa clearly 
degrades the results (Table S1, Figures 2e and 2f). Overall, we find that it is possible to reduce the precision 
of inputs and outputs even beyond bfloat16 format without substantially affecting the climate of the sim-
ulations, suggesting that NN parameterizations at reduced precision could bring substantial advantages in 
speed and power requirements. Using reduced numerical precision could also help with RF parameteriza-
tions by reducing their memory requirements which can be large.

5. Conclusions
In this study, we develop an NN parameterization with a physically motivated structure learned from accu-
rate coarse graining of the output and equations of a three-dimensional high-resolution simulation of the 
atmosphere. We show that the NN parameterization can be dynamically coupled to the atmospheric model 
at coarse resolution to give stable simulations with a climate that is close to that of the high-resolution sim-
ulation. In contrast to the approach in Rasp et al. (2018), we find that simulations with the NN parameter-
ization are stable for a variety of configurations, and in contrast to Brenowitz and Bretherton (2018, 2019), 
they do not exhibit climate drift. Furthermore, in contrast to Ott et al. (2020), we find that achieving stable 
simulations does not require the NN parameterization to be very accurate in an offline test, and a mediocre 
performing NN1 with two layers (i.e., one hidden layer) is stable when coupled to SAM.

We use the same high-resolution model output for training that was used by YOG20, which suggests that 
the stability of simulations with an RF parameterization in previous studies (O'Gorman & Dwyer, 2018, 
YOG20) is not only possible with RFs since we find NNs to be robustly stable as well. Instead, the stability 
of simulations with NN parameterizations may require accurate processing of the high-resolution mod-
el output to obtain subgrid tendencies and fluxes (in addition to not including stratospheric levels). The 
main differences in the processing used here compared to previous studies with NN parameterizations of 
atmospheric subgrid processes are that the contribution of subgrid terms were calculated using the equa-
tions of the model for the instantaneous state of the atmosphere rather than approximating them based 
on differences over 3-h periods (Brenowitz & Bretherton, 2018, 2019) and that subgrid corrections were 
calculated independently for each physical process. The latter allows us to encapsulate more physics in the 
parameterization, such as by calculating fluxes and sinks rather than net tendencies. A direct comparison 
between RF and NN parameterizations shows that although NNs are more accurate in offline tests, when 
coupling the parameterizations to the atmospheric model at coarse resolution, both parameterizations have 
comparable results. Overall, our results imply that accurate processing of the high-resolution output that is 
used for the training and use of a physically based structure may be more important than intensive hyper-
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Figure 2. ((a),(c),(e)) Zonal- and time-mean precipitation rate as a function of latitude and ((b),(d),(f)) frequency distribution of 3-hourly precipitation 
rate. Results are shown for the high-resolution simulation (hi-res in blue; panels (a)–(d)), the coarse-resolution simulation (x8 in green; panels (a)–(b)), the 
coarse-resolution simulation with the NN parameterization (x8-NN in orange dash-dotted; panels (a)–(f)), the coarse-resolution simulation with the RF 
parameterization (x8-RF in black; panels (c)–(d)), and simulations with reduced numerical precision of the inputs and outputs of the NN parameterization with 
7 significant bits in the mantissa (x8-NN-7bits in gray; panels (e)–(f)), and 1 significant bit in the mantissa (x8-NN-1bits in yellow; panels (e)–(f)) as compared to 
23 bits in the mantissa for x8-NN. The frequency distribution is shown for axes with linear scale in the insets of (b),(d),(f). For hi-res, the precipitation is coarse-
grained to the grid spacing of x8 prior to calculating the frequency distribution. hi-res, high-resolution simulation; NN, neural network; RF, random forest.
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parameter tuning of an ML algorithm. Nevertheless, combining accurate processing of the high-resolution 
output, a physically based structure and intensive hyperparameter tuning could be necessary to achieve 
accurate parameterization in more difficult scenarios such as in real-geography settings. The time step in 
our coarse-resolution simulations cannot be larger than roughly 75 s because of the explicit time stepping 
of turbulent diffusion in SAM, and future work is needed to extend these results to longer time steps and to 
simulations with land and topography.

Finally, we show that reducing the numerical precision of the inputs and outputs of the NN parameterization 
to bfloat16 floating-point format leads to a similar climate compared to using single precision. This implies 
that NN parameterizations with reduced precision could be used for faster training, and more importantly, for 
reducing the computational resources and energy needed to run climate simulations. To further investigate 
the feasibility of NN parameterizations with reduced precision, future work should also test NN parameteriza-
tions that were trained with reduced precision, such that the weights, biases and multiplications used during 
forward propagation of the NN are performed at reduced precision. Our results also suggest that the simulated 
climate may not be strongly affected by reducing the precision of conventional parameterizations or super pa-
rameterizations, but in those cases, it would likely be necessary to check for each particular parameterization 
which parts of its algorithm can be safely reduced in precision (Düben et al., 2017).

Data Availability Statement
Associated code, processed data from simulations with neural network and random forest parameteriza-
tions, trained neural network parameterizations and (a link to) the output of the high-resolution simulation 
are available at zenodo.org (https://doi.org/10.5281/zenodo.4526521).
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