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ABSTRACT: Precipitation extremes produced by convection have been found to intensify with

near-surface temperatures at a Clausius-Clapeyron rate of 6 to 7% K−1 in simulations of radiative-

convective equilibrium (RCE). However, these idealized simulations are typically performed over

an ocean surface with a high near-surface relative humidity (RH) that stays roughly constant with

warming. Over land, near-surface RH is lower than over ocean and is projected to decrease by

global climate models. Here, we investigate the dependence of precipitation extremes on near-

surface RH in convection-resolving simulations of RCE. We reduce near-surface RH by increasing

surface evaporative resistance while holding free-tropospheric temperatures fixed by increasing

surface temperature. This “top-down” approach produces an RCE state with a deeper, drier

boundary layer, which weakens convective precipitation extremes in three distinct ways. First, the

lifted condensation level is higher, leading to a small thermodynamic weakening of precipitation

extremes. Second, the higher lifted condensation level also reduces positive buoyancy in the lower

troposphere, leading to a dynamic weakening of precipitation extremes. Third, precipitation re-

evaporates more readily when falling through a deeper, drier boundary layer, leading to a substantial

decrease in precipitation efficiency. These three effects all follow from changes in near-surface

relative humidity and are physically distinct from the mechanism that underpins the Clausius-

Clapeyron scaling rate. Overall, our results suggest that changes in relative humidity must be taken

into account when seeking to understand and predict changes in convective precipitation extremes

over land.
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SIGNIFICANCE STATEMENT: Thunderstorms and other types of convection produce very26

heavy rainfall in many regions on Earth. In this paper, we ran a computer model to show that27

when relative humidity near the surface is reduced, convection produces weaker rainfall rates. This28

happens for three reasons: the updrafts in the storms are weaker, there is less cloud-water because29

the cloud base is higher, and less of that cloud-water makes it to the surface as rainfall. This is an30

important finding because we expect that relative humidity will decrease over many land regions31

as the climate warms, possibly seasonally offsetting some of the impact on rainfall extremes of32

increases in the absolute amount of water vapor.33

1. Introduction34

The heaviest of precipitation events are affected by climate change through a “thermodynamic35

contribution” related to increasing water vapor, a “dynamic” contribution related to changes in ver-36

tical velocities, and by changes in “precipitation efficiency,” the fraction of condensed water vapor37

that actually reaches the surface as precipitation (O’Gorman 2015). For convective precipitation38

extremes, the thermodynamic contribution approximately follows a Clausius-Clapeyron scaling39

rate of 6 to 7% per K of surface warming (Muller et al. 2011; Romps 2011; Abbott et al. 2020).40

Precipitation extremes scale near the Clausius-Clapeyron rate in global climate model (GCM)41

projections at the global scale, albeit with large uncertainties in the tropics (e.g., O’Gorman and42

Schneider 2009; Kharin et al. 2013), in some regional studies with convection-resolving models43

(CRMs) (e.g., Ban et al. 2015; Prein et al. 2017), and in globally-aggregated observations over land44

(Westra et al. 2013). Evidence exists, however, from observations (Fowler et al. 2021), GCM pro-45

jections (Pfahl et al. 2017; Williams and O’Gorman 2022), and regional CRM studies (Lenderink46

et al. 2021) that precipitation extremes may regionally and seasonally respond to climate change47

at a rate that deviates from Clausius-Clapeyron scaling.48

Williams and O’Gorman (2022), in particular, found a seasonal contrast in the scaling rates of49

precipitation extremes with climate warming across simulations from the Coupled Model Inter-50

comparison Project, Phase 5 (CMIP5) (Taylor et al. 2012). They found that over midlatitude land51

in the Northern Hemisphere, dynamic contributions to precipitation extremes were near-zero in the52

winter but negative in the summer. This negative dynamic contribution is likely related to convec-53

tion, since convective precipitation extremes are common in the summer. Williams and O’Gorman54
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(2022) further found a correlation between these summertime negative dynamical contributions55

and a decrease in summertime near-surface relative humidity (RH), suggesting that convective56

precipitation extremes respond dynamically to decreases in near-surface RH.57

Near-surface RH is often thought to influence precipitation extremes and their response to climate58

change through the Clausius-Clapeyron rate. Only when RH stays constant will near-surface59

specific humidity scale one-to-one with saturation specific humidity and follow the Clausius-60

Clapeyron rate. With this in mind, a number of papers have opted to scale precipitation extremes61

against dew-point temperature instead of temperature, arguing that a direct measure of atmospheric62

moisture content should produce a scaling, absent other effects, that follows the Clausius-Clapeyron63

rate (Lenderink and van Meijgaard 2010; Lenderink et al. 2011; Lepore et al. 2015; Barbero et al.64

2018; Lenderink et al. 2021). However, arguments in favor of such a “dew-point scaling” approach65

over a more traditional “temperature scaling” implicitly assume that RH only matters for its66

influence on the thermodynamic contribution to changes in precipitation extremes. By finding a67

relationship between RH and a dynamic contribution, Williams and O’Gorman (2022) have called68

this assumption into question.69

Near-surface RH is expected to decrease over land in response to anthropogenic climate change70

for several reasons. First, RH is expected to decrease over land because water vapor over land is71

influenced by moisture transport from over ocean, while at the same time ocean warming is weaker72

than the land warming. Thus, the source of water vapor from over ocean can’t keep pace with73

the increasing saturation vapor pressure over land (Simmons et al. 2010; Byrne and O’Gorman74

2016, 2018). In addition, surface evapotranspiration rates provide a direct control on near-surface75

RH. Surface evapotranspiration and thus near-surface RH is reduced by a “physiological forcing”76

in which plant stomata close in response to higher atmospheric CO2 levels (Cao et al. 2010), and77

this stomatal closure has been found to decrease mean precipitation in summer over the northern78

midlatitudes (Skinner et al. 2017). Lastly, decreases in soil moisture are also expected to influence79

near-surface RH (Berg et al. 2016; Zhou et al. 2023). Comparison between observed and simulated80

trends in RH in recent decades shows that GCMs underestimate decreases in near-surface RH in81

arid and semi-arid regions (Simpson et al. 2024), which means that they may also underestimate82

any resulting impacts on precipitation in these regions.83
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In this paper, we investigate the sensitivity of convective precipitation extremes to near-surface84

RH in the simplest possible setting: a CRM run to a state of radiative-convective equilibrium85

(RCE). In regional simulations, across a wide range of relative humidities, CRMs have been86

demonstrated to reproduce observed precipitation extremes more reliably than models that use87

convective parameterizations (Lenderink et al. 2024). In RCE simulations, CRMs are additionally88

useful because they allow for careful, controlled study of the physics underlying precipitation89

statistics and their response to different climate forcings. A number of studies of idealized CRM90

simulations of RCE have found that convective precipitation extremes scale quite close to the91

Clausius-Clapeyron rate in response to warming (Muller et al. 2011; Romps 2011). Dynamic92

contributions to precipitation extremes remain relatively small in these idealized studies, even when93

convection is organized into squall lines by wind shear (Muller 2013) or overturning structures in94

a channel domain (Abbott et al. 2020). These particular studies also did not find large changes95

in precipitation efficiency, but Singh and O’Gorman (2014) did find that precipitation efficiency96

decreased in colder RCE states due to microphysical effects. Several other idealized CRM studies97

have diagnosed the importance of various physical processes in setting the precipitation efficiency98

for both mean and extreme precipitation (Lutsko and Cronin 2018; Da Silva et al. 2021; Abramian99

et al. 2023; Langhans et al. 2015). However, the RCE studies cited above have all used an ocean100

surface as a bottom boundary condition, and so the influence of near-surface RH on precipitation101

extremes in states of RCE has remained relatively unexplored.102

We are aware of two CRM studies of the effect of overall surface dryness on convective intensity in103

RCE: Hansen and Back (2015) and Sarbeng (2023). These studies were motivated by observational104

evidence that convection is more intense over land than over ocean (Zipser et al. 2006). Both105

studies found that the maximum updraft velocity does not increase with a higher Bowen ratio (less106

evaporative surface), which suggests that the land-ocean contrast in convective intensity is not107

due to the contrast in surface dryness. Sarbeng (2023) even found weakening in updrafts in the108

lower free troposphere as the surface dries, which could be consistent with the negative dynamic109

contribution to precipitation extremes found by Williams and O’Gorman (2022) in response to110

lower near-surface RH, especially given that condensation rates are sensitive to updraft velocities111

in the lower troposphere where saturation vapor pressures are relatively high.112
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To modify near-surface RH in our simulations, we introduce a “vegetative” evaporative resistance113

parameter similar to Betts (2000) and inspired by the effects of stomatal closure on surface relative114

humidity. As the climate changes, decreases in near-surface RH occur alongside increases in115

near-surface temperatures, such that the near-surface moist static energy and free-tropospheric116

temperatures (which are convectively coupled at equilibrium and under the influence of larger-117

scale dynamics) tend not to change as much (e.g., Byrne and O’Gorman 2013; Berg et al. 2016).118

Thus we follow the general approach of Hansen and Back (2015) and Sarbeng (2023) by holding the119

free-tropospheric temperature fixed as the surface dries, specifically using the relaxation procedure120

introduced by Sarbeng (2023). For simplicity, we do not parameterize the effects of changes in121

large-scale dynamics or include the diurnal cycle, both of which should be considered in future122

work.123

Section 2 describes the vegetative resistance parameter, the relaxation procedure, and the model124

simulations more generally. Section 3 presents an overview of the mean RCE state achieved125

by varying the vegetative resistance and the fundamental result of this paper: that precipitation126

extremes vary substantially with near-surface RH, and that the mechanisms involves changes in127

dynamics and precipitation efficiency rather than the thermodynamic contribution that gives rise128

to the Clausius-Clapeyron scaling rate of precipitation extremes. Sections 4 and 5 explain this129

dependence in more detail. Specifically, Section 4 shows that a higher lifted condensation level130

weakens convective updrafts in the lower troposphere, while Section 5 diagnoses changes in131

precipitation efficiency in terms of cloud microphysics and re-evaporation. Section 6 provides a132

concluding discussion, highlighting the implications of a large sensitivity of precipitation extremes133

to near-surface RH.134

2. Model and simulations135

a. Convection-resolving model and basic setup136

We use the System for Atmospheric Modeling (SAM), version 6.11 (Khairoutdinov and Randall137

2003). All simulations were run with a 1 km horizontal grid spacing in a 128×128 km2 domain,138

and with 64 vertical levels. Vertical spacing starts at 37.5 m near the surface and increased steadily139

until the model top at a height of 27 km. Above 16 km, atmospheric motions are damped in a140

sponge layer. SAM was run with its own one-moment microphysics parameterization. No diurnal141
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cycle was simulated; instead, a constant zenith angle of 42.3◦ was used. This zenith angle, along142

with a solar constant set to 565 W/m2, produces Earth’s equatorial annual average of insolation143

weighted by the cosine zenith angle, following the recommendations of Cronin (2014).144

b. Vegetative evaporative resistance and surface temperature145

We modify near-surface RH by altering the rate of surface evaporation. To accomplish this, a146

free parameter, the “vegetative resistance” 𝑟𝑣, was introduced in SAM’s equation for the surface147

latent heat flux:148

LHF = 𝜌𝐿𝑣

Δ𝑞

𝑟𝑎𝑒 + 𝑟𝑣
, (1)

where 𝜌 is near-surface air density, 𝐿𝑣 is the latent heat of vaporization, Δ𝑞 is the difference between149

near-surface mixing ratio 𝑞𝑣 and the saturation mixing ratio at surface (skin) temperature 𝑇𝑠, and150

𝑟𝑎𝑒 = (𝐶𝑒𝑈)−1 is an “aerodynamic resistance.” For the aerodynamic resistance, 𝐶𝑒 is a unitless151

exchange coefficient determined by Monin-Obukhov similarity theory and 𝑈 is the near-surface152

windspeed. When calculating surface heat fluxes, SAM sets 𝑈 to have a minimum value of 1 m153

s−1 to account for unresolved gusts.154

We model the surface to be horizontally homogeneous, so that there are no spatial variations155

in 𝑟𝑣 or in the surface temperature 𝑇𝑠. The surface is an ocean when 𝑟𝑣 = 0 s m−1 and surface156

evaporation rates decrease as 𝑟𝑣 is increased (all else held equal). Modifications to evaporation157

through 𝑟𝑣 affect the surface energy budget, and so 𝑇𝑠 may not stay constant as 𝑟𝑣 is varied.158

An intuitive approach to determining a value for 𝑇𝑠, given a value of 𝑟𝑣, is to simply to solve159

the surface energy budget until equilibrium is achieved, as has been done by some past RCE160

studies (e.g., Romps (2011)). Simulations using this approach (not shown) reached a state of161

equilibrium with lower 𝑇𝑠 at large 𝑟𝑣, causing the free troposphere to cool substantially.1 Such a162

free-tropospheric cooling is inconsistent with the constraint of weak temperature gradients (WTG)163

in the tropics. Instead, we take a “top-down” perspective on the controls on land temperatures164

at climate equilibrium, which argues that free-tropospheric temperatures over land are strongly165

coupled vertically to surface temperature and moisture in convecting regions by moist adiabatic166

lapse rates, and also strongly coupled horizontally to free-tropospheric temperatures over ocean167

1As 𝑟𝑣 increased, the free troposphere in these simulations dried and 𝑇𝑠 cooled in order to maintain the same outgoing longwave radiation.
This kind of radiative response to 𝑟𝑣 (and similar parameters) has been found previously in GCM studies that varied evaporation rates via fractional
coverage of land continents vs. ocean (Laguë et al. 2021, 2023).
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by horizontal advection and gravity wave dynamics. This perspective has previously been used to168

explain the land-ocean warming and moistening contrasts under climate change (e.g., Joshi et al.169

2008; Byrne and O’Gorman 2013), and it implies that free-tropospheric temperatures over land170

should not necessarily change in response to a change in surface evapotranspiration.171

With this perspective in mind, we use a method devised by Sarbeng (2023), which adjusts 𝑇𝑠 so172

that horizontal-mean temperature 𝑇 is nudged towards a reference profile 𝑇ref within a specified173

pressure layer between 𝑝lower and 𝑝upper. That is, we evolve 𝑇𝑠 forward in time using174

𝑑𝑇𝑠

𝑑𝑡
=

1
𝜏Δ𝑝

∫ 𝑝lower

𝑝upper

(𝑇ref(𝑝) −𝑇 (𝑝, 𝑡)) 𝑑𝑝, (2)

where Δ𝑝 = 𝑝lower − 𝑝upper is the thickness of the layer and 𝜏 is a relaxation timescale. This175

implementation differs from Sarbeng (2023) in two ways. First, the integral was evaluated in176

pressure coordinates, not height coordinates, with 𝑝lower = 600 hPa and 𝑝upper = 400 hPa. Second,177

a longer relaxation timescale of 𝜏 = 3.6 days was used instead of 𝜏 = 6 hr. Both of these modifications178

dampened oscillations in𝑇𝑠 that appeared in initial attempts to apply this adjustment. The reference179

profile was calculated from a simulation with 𝑟𝑣 = 0 as described in the next subsection.180

An alternative approach would be to parameterize WTG dynamics by introducing a large-181

scale vertical velocity that prevents large changes in free-tropospheric temperature (Sobel and182

Bretherton 2000; Raymond and Zeng 2005). The role of changes in large-scale vertical velocities183

is an important topic for future work, but here we focus on the simplest case of RCE.184

c. Simulations185

In total, 5 simulations were run. Each simulation is associated with a different vegetative186

resistance 𝑟𝑣: 0, 200, 500, 1000, and 2000 s m−1. The same reference profile 𝑇ref(𝑝) was used to187

determine a surface temperature 𝑇𝑠 (𝑟𝑣) for each simulation. The reference profile was calculated188

by first running SAM in an “ocean RCE” configuration: 𝑟𝑣 = 0 s m−1 and 𝑇𝑠 = 𝑇𝑠,𝑜 = 300 K. This189

ocean RCE simulation was run for 50 days, and 𝑇ref was calculated by averaging horizontally and190

over the last 10 days of the simulation.191

Once 𝑇ref was determined, the following procedure was used for every simulation (including192

𝑟𝑣 = 0 s m−1). First, SAM was run for 40 days, with 𝑇𝑠 evolved forward in time following Equation193

(2). If, averaged horizontally and over the last 10 days of this simulation, the vertical average194
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𝑟𝑣 (s m−1) 𝑇𝑠 (K) near-sfc 𝑇 (K) near-sfc RH (%) near-sfc 𝑞𝑣 (g kg−1) 𝑃 (mm day−1)

0 300.0 296.9 75.2 14.0 2.8

200 301.9 297.7 68.5 13.4 2.4

500 303.9 298.7 61.3 12.8 2.1

1000 306.0 299.9 53.1 11.9 1.6

2000 308.3 301.4 44.3 10.9 1.2

Table 1. Horizontal- and time-mean variables for each 𝑟𝑣 simulation: surface temperature 𝑇𝑠 (determined

by the relaxation procedure); near-surface air temperature 𝑇 , RH, and mixing ratio 𝑞𝑣; and surface precipitation

rate 𝑃. Note that “near-surface” refers to the lowest model level (40 m).

205

206

207

between 𝑝low and 𝑝upp of temperature and the reference profile 𝑇ref were within 0.1 K, then the195

average value of 𝑇𝑠 over those 10 days was saved. Otherwise, the simulation was run for 10 more196

days and the procedure was repeated. Once a value of𝑇𝑠 was saved, SAM was re-run from rest with197

this fixed value of 𝑇𝑠 for 60 days. The last 30 days of those fixed-𝑇𝑠 simulations were used for all of198

the analysis presented below; during this 30 day period, instantaneous snapshots from SAM were199

saved every 3 hours. Table 1 reports the equilibrium values of 𝑇𝑠, as well as the horizontal- and200

time-average near-surface temperature, near-surface RH, near-surface 𝑞𝑣, and surface precipitation201

rates for all simulations. The values of 𝑟𝑣 were spaced further apart at large values of 𝑟𝑣, so that202

for each increment in 𝑟𝑣, 𝑇𝑠 increased by approximately 2 K and RH decreased by approximately203

7−8% (Table 1).204

3. Response to changes in surface dryness208

a. Response of mean climate209

As 𝑟𝑣 increases, the boundary layer changes in three ways. First, near-surface RH and specific210

humidity decrease with increasing 𝑟𝑣 (Table 1 and Fig. 1a). Second, temperatures increase in the211

boundary layer even as temperature stays constant in the free troposphere (Table 1 and Fig. 1b).212

Third, the lifted condensation level (LCL), calculated analytically (Romps 2017) using horizontal-213

and time-mean near-surface air properties, rises as 𝑟𝑣 increases (Fig. 1b). If we consider the 𝑟𝑣 = 0214

s m−1 simulation as “ocean” and the 𝑟𝑣 > 0 s m−1 simulations as “land,” then these tendencies215

are consistent with the top-down perspective on land-ocean contrasts of Byrne and O’Gorman216

(2013) (c.f. their Fig. 1), since the surface temperature over land must be higher given the same217
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free-tropospheric temperatures over land and ocean, moist- adiabatic lapse rates above the LCL218

and dry adiabatic lapse rates below the LCL, and a higher LCL over land. One difference is that219

lapse rates below the LCL in our simulations shown in Fig. 1b are not quite dry adiabatic because220

of precipitation-driven cold pools.221

The reference temperature profile, 𝑇ref, calculated over an ocean surface (𝑟𝑣 = 0 s/m), is closely222

followed through the free troposphere in simulations with 𝑟𝑣 > 0 s/m. Thus, in conjunction with223

the relaxation procedure, 𝑟𝑣 acts as a control on the near-surface RH without modifying free-224

tropospheric temperatures. Relative humidity also decreases somewhat in the free troposphere225

with increasing 𝑟𝑣.226
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Fig. 1. Horizontal- and time-mean: (a) near-surface relative humidity and (b) potential temperature versus

height for simulations with varied vegetative resistance 𝑟𝑣 as labeled in the legend. The legend is spaced vertically

so that each horizontal line is at the LCL (denoted on the 𝑦-axis of both panels with triangles). The LCL is

calculated following Romps (2017) and using near-surface horizontal- and time-mean relative humidity and

temperature. Note the different vertical axis ranges in panels (a) and (b).
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b. Response of precipitation extremes232

Every horizontal gridpoint and time in a given simulation has its own value of the instantaneous233

precipitation rate 𝑃 (saved directly) and the vertically-integrated condensation rate 𝐶 (calculated234

10



as described below from Equation (3)). We characterize extreme precipitation 𝑃𝑒 by the average235

of 𝑃 over all values at and above the 99.9th percentile of 𝑃. Similarly, extreme condensation 𝐶𝑒 is236

the average of 𝐶 over all values at and above the 99.9th percentile of 𝐶. Precipitation efficiency237

𝜖𝑝 is defined as the ratio 𝑃𝑒/𝐶𝑒, and thus involves different sets of gridpoints and times for 𝑃𝑒 and238

𝐶𝑒, following the approach of Singh and O’Gorman (2014), Abbott et al. (2020), and Da Silva239

et al. (2021) which recognizes that the different variables peak at different points in the convective240

lifecycle.241

We find that precipitation extremes weaken substantially as the surface dries and RH decreases242

(Fig. 2). When 𝑟𝑣 increases from 0 s m−1 to 2000 s m−1, precipitation extremes decrease from243

34.5 mm hr−1 to 19.2 mm hr−1 (Fig. 2a), a 57% fractional decrease. Over the same range of 𝑟𝑣,244

near-surface RH decreases from 75.2% to 44.3% (Fig. 2b). This is an absolute decrease in RH245

of 31 percentage points (%pt), or a fractional decrease of 52%. Thus, we calculate (following the246

methodology described in Section 3c) the 𝑃𝑒 scaling rate between our wettest and driest simulations247

either as a 1.9% per %pt (absolute) increase in RH or as a 1.1% per % (fractional) increase in RH.248

This scaling rate is the same sign as, but half the magnitude of, the roughly 2% per % scaling rate249

found by Williams and O’Gorman (2022) for the dynamical contribution to changes in precipitation250

extremes over northern hemisphere midlatitude land in the summertime (c.f. their Fig. 3).251
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Fig. 2. (a) 99.9th-percentile threshold average of instantaneous precipitation rates across the simulations.

Error bars show the 5th to 95th percentile of the threshold average calculated using block bootstrapping. (b)

Horizontal- and time-mean relative humidity across the simulations.
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Note that this scaling rate is computed between simulations with a large difference in RH. The255

scaling rate against absolute changes in RH is smaller over wetter surfaces (1.4% per %pt between256

𝑟𝑣 = 0 s m−1 and 200 s m−1) and larger over drier surfaces (2.5% per %pt between 𝑟𝑣 = 1000 s m−1
257

and 2000 s m−1). In contrast, the scaling rate against fractional changes in RH varies less between258

wetter surfaces (1.0% per % between 𝑟𝑣 = 0 s m−1 and 200 s m−1) vs. drier surfaces (1.2% per %259

between 𝑟𝑣 = 1000 s m−1 and 2000 s m−1). Given this reduced variability, we present our results260

in terms of scaling rates against fractional changes in RH across our full range of simulations261

(unless otherwise stated). This is also consistent with Williams and O’Gorman (2022), who report262

fractional changes in RH (A. Williams, 2024, personal communication).263

Although we focus on precipitation extremes in this paper, we have also found that the fractional264

decrease in 𝑃𝑒 is nearly identical to a 58% decrease, from 2.8 mm day−1 to 1.2 mm day−1,265

in the horizontal- and time-mean precipitation rate (Table 1). This is different from CRM and266

GCM simulations that either warm the surface or increase CO2 concentrations, which find that267

mean precipitation rates are energetically constrained to scale with warming below the CC scaling268

rate that precipitation extremes approximately follow (Allen and Ingram 2002; ?; O’Gorman and269

Schneider 2009; Muller et al. 2011).270

c. Decomposition of response of precipitation extremes271

High percentile instantaneous surface precipitation rates are associated with deep convection272

wherein strong updrafts condense moisture. SAM does not explicitly calculate condensation rates,273

and we want to decompose changes in the condensation rate into contributions from different274

physical factors. Therefore, we calculate the column-integrated condensation rate 𝐶 as275

𝐶 =

∫ 𝑧𝑡

𝑧LCL

−
(
𝑑𝑞∗𝑣
𝑑𝑧

)
ma

𝜌𝑤̃ 𝑑𝑧, (3)

where 𝑧LCL is the height of the LCL calculated following Romps (2017) using near-surface values276

of the column, 𝑧𝑡 = 14 km is a fixed upper height, 𝑤 is vertical velocity, 𝑤̃ ≡max(0,𝑤) is the updraft277

speed (i.e., excluding downdrafts), 𝑞∗𝑣 is the saturation mixing ratio (a function of only temperature278

𝑇 and pressure 𝑝), and the subscript ma indicates that the derivative 𝑑𝑞∗𝑣/𝑑𝑧 is calculated following279

a local moist adiabatic lapse rate. This definition of the condensation integral differs from the280

common definition (e.g., O’Gorman and Schneider 2009). First, a lower bound of 𝑧 = 𝑧LCL is used281

12



instead of 𝑧 = 0. Second, 𝑤̃ is used instead of 𝑤. Both of these choices are made on a physical282

basis: only upward velocities drive condensation, and convective clouds do not typically extend283

to the surface. The alternative choice of using 𝑤 instead of 𝑤̃ gives an approximate expression284

for net condensation (i.e., condensation from updrafts minus re-evaporation from downdrafts), but285

we include only updrafts so that the effect of re-evaporation is fully included in the precipitation286

efficiency. Also, given that the LCL rises with increasing 𝑟𝑣 (Fig. 1), it is important to diagnose287

the effect that the LCL has on condensation rates in order to correctly associate thermodynamic288

contributions, dynamic contributions, and changes in precipitation efficiency with the appropriate289

underlying mechanisms.290

Letting 𝛿(·) denote the difference in a variable between two climate states and (·) denote the291

average value of that variable between two climate states, then the relation 𝑃𝑒 = 𝜖𝑝𝐶𝑒 allows for292

fractional changes in precipitation to be decomposed in terms of fractional changes in efficiency293

and condensation:294

𝛿𝑃𝑒

𝑃𝑒

=
𝛿𝜖𝑝

𝜖𝑝
+ 𝛿𝐶𝑒

𝐶𝑒

, (4)

where we have neglected a nonlinear term (which is small for sufficiently close climate states).295

To minimize this nonlinear term, we calculate fractional changes of an extreme variable between296

adjacent simulations first (e.g., between 𝑟𝑣 = 0 s m−1 and 𝑟𝑣 = 200 s m−1), and then sum these297

together to get the total fractional change between the wettest and driest simulations.2 To get scaling298

rates, total fractional changes are normalized by the difference in the logarithm of horizontal- and299

time-mean RH between the wettest and driest simulations.300

Fractional changes in condensation may, in turn, be decomposed into thermodynamic and dy-301

namic contributions by using Equation (3). In this paper, thermodynamic contributions to con-302

densation refer to changes in (𝑑𝑞∗𝑣/𝑑𝑧)ma, which is a function of 𝑇 and 𝑝, and also to changes303

in 𝑧LCL, which is a function of near-surface 𝑇 and RH (Romps 2017). Dynamic contributions to304

condensation refer to changes in 𝜌𝑤̃. Changes in the upper bound 𝑧𝑡 are neglected because 𝜌 and305

𝑑𝑞∗𝑣/𝑑𝑧 are both small in the upper troposphere. The thermodynamic and dynamic contributions306

to 𝐶𝑒 may be written succinctly by using a mask 𝜇(𝑧) with 𝜇 = 0 when 𝑧 < 𝑧LCL and 𝜇 = 1 when307

2This is, to good approximation, equal to the change in the logarithm of the extreme variable (e.g., 𝛿 ln𝑃𝑒), which ensures that decompositions
such as Equation (4) are exact (e.g., 𝛿 ln𝑃𝑒 = 𝛿 ln𝐶𝑒 + 𝛿 ln 𝜖𝑝 without approximation). The advantage of our approach is that the decomposition
into thermodynamic and dynamic contributions, Equation (5), cannot be written in terms of the logarithm of an extreme variable.

13



𝑧 ≥ 𝑧LCL:308

𝛿𝐶𝑒

𝐶𝑒

≈ 1
𝐶𝑒

∫ 𝑧𝑡

0
𝛿

(
−
(
𝑑𝑞∗𝑣
𝑑𝑧

)
ma

𝜇(𝑧)
)
𝑒

(𝜌𝑤̃)𝑒 𝑑𝑧︸                                             ︷︷                                             ︸
Thermodynamic

+ 1
𝐶𝑒

∫ 𝑧𝑡

0

(
−
(
𝑑𝑞∗𝑣
𝑑𝑧

)
ma

𝜇(𝑧)
)
𝑒

𝛿(𝜌𝑤̃)𝑒 𝑑𝑧︸                                            ︷︷                                            ︸
Dynamic

, (5)

where the subscript 𝑒 indicates that the integrand terms are averaged at and above the 99.9th309

percentile of 𝐶.310

For extreme variables, sampling error was quantified using a block bootstrapping method. First,311

the samples were split into blocks of size 8 km x 8 km x 1 time snapshot. Next, the set of blocks312

were resampled 100 times with replacement to give 100 new datasets of the same size. Finally,313

the extreme statistics (averages above a percentile) for each variable were computed for each314

resampling. Drawing blocks, instead of individual gridpoints, accounts for the spatially-correlated315

nature of heavy precipitation: convection has a larger footprint than a 1 km x 1 km gridbox.316

Figure 3 shows the resulting decomposition of the 1.1% per % scaling rate of 𝑃𝑒 with near-317

surface RH. Precipitation efficiency contributes the most to this scaling rate (0.8% per %) although318

fractional changes in 𝐶𝑒 (0.3% per %) are also substantial. Changes in 𝐶𝑒 are further decomposed319

into a dynamic contribution (0.23% per %) and a small thermodynamic contribution (0.06% per320

%). Thus, all three of the thermodynamic, dynamic and precipitation efficiency changes contribute321

positively to the increase in 𝑃𝑒 with increasing near-surface RH.322

4. Understanding the thermodynamic contribution328

While small, the thermodynamic contribution of 0.06% per % in Fig. 3 is robust with a very329

small error bar. Free-tropospheric temperatures are relatively horizontally homogeneous and are330

constrained to not change in the horizontal mean as the surface dries, and thus the thermodynamic331

contribution must be explained by changes in the LCL rather than changes in free-tropospheric332

temperatures. To illustrate this, Fig. 4 plots the vertical structure of the factors composing the333

integrand in Equation (3). The moist-adiabatic moisture gradient
(
𝑑𝑞∗𝑣/𝑑𝑧

)
ma is identical above334

2 km across all values of 𝑟𝑣 (Fig. 4a): temperatures above this height are held fixed by the335

relaxation procedure described in Section 2.2, and so
(
𝑑𝑞∗𝑣/𝑑𝑧

)
ma, which depends on temperature336

and pressure, stays approximately constant with increasing 𝑟𝑣. However, since the condensation337
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0.0 0.25 0.5 0.75 1.0 1.25
Scaling Rate (% per % increase in RH)

Precipitation

EfficiencyCondensation

DynamicThermodynamic

Fig. 3. A physical decomposition of fractional changes in extreme precipitation (precipitation rates averaged

above the 99.9th percentile) expressed as scaling rates with respect to fractional changes in RH. Variables that

appear in higher rows are exactly equal to the sum of the variables in lower rows they are connected to by thin

dashed lines. All scaling rates are calculated from 𝑟𝑣 = 0 s m−1 to 𝑟𝑣 = 2000 s m−1. Error bars show the 90%

confidence interval calculated using block bootstrapping of the extreme variable statistics.

323

324

325

326

327

integral is not evaluated below 𝑧LCL and the LCL rises appreciably with increasing 𝑟𝑣 (as the338

near-surface air dries and warms), there is some negative thermodynamic contribution below 2 km.339

This contribution is small because of relatively weak values of 𝜌𝑤̃ this close to the surface (Fig.340

4b).341

The thermodynamic contribution may be estimated by approximating that in the layer between342

LCLs, a) the cloud temperature follows a moist adiabat so that
(
𝑑𝑞∗𝑣/𝑑𝑧

)
ma ≈ 𝑑𝑞∗𝑣/𝑑𝑧, and b) the343

upward mass flux is approximately constant with height so that 𝜌𝑤̃ ≈ 𝑀0 where 𝑀0 is a constant.344

Using the definition of the LCL as the height at which lifted near-surface air becomes saturated,345

the thermodynamic term in Equation (5) is approximately346

1
𝐶𝑒

∫
0
𝛿

(
−
(
𝑑𝑞∗𝑣
𝑑𝑧

)
ma

𝜇(𝑧)
)
𝜌𝑤̃ 𝑑𝑧 ≈ 𝑀0

𝐶𝑒

∫ 𝑧LCL,1

𝑧LCL,0

𝑑𝑞∗

𝑑𝑧
𝑑𝑧 =

𝑞𝑣,𝑠𝑀0

𝐶𝑒

𝛿𝑞𝑣,𝑠

𝑞𝑣,𝑠
, (6)

where 𝑞𝑣,𝑠 is the near-surface mixing ratio and 𝑧LCL,0 and 𝑧LCL,1 are the LCLs in the two climate347

states. Per Table 1, 𝑞𝑣,𝑠 decreases from 14.0 g kg−1 when 𝑟𝑣 = 0 s m−1 to 10.9 g/kg when 𝑟𝑣 = 2000348

s m−1: a fractional change of 0.48% per % change in RH. However, with an average upward mass349

flux between the LCLs of 𝑀0 = 0.63 kg m−2 s−1, 𝑞𝑣,𝑠𝑀0 = 28.4 mm hr−1 is roughly a quarter of the350
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size of the condensation rate, 𝐶𝑒 = 115 mm hr−1.3 Thus, Equation (6) predicts a thermodynamic351

contribution of 0.12% per % increase in RH, which is double the actual thermodynamic contribu-352

tion. This difference can be explained by the fact that in the layer between LCLs, (𝑑𝑞∗/𝑑𝑧)ma is353

about half as large as 𝑑𝑞∗/𝑑𝑧 (not shown). Regardless, from Equation 6, we see that the thermo-354

dynamic contribution scales at a weaker rate than the near-surface mixing ratio because the water355

vapor flux at cloud base (𝑞𝑣,𝑠𝑀0) is much smaller than the column-integrated condensation rate.356

0.0 0.5 1.0 1.5 2.0
(dq *

v /dz)ma above LCL (g kg 1 m 1)

0

2

4

6

8

10

12

14

He
ig

ht
 (k

m
)

(a)

0 1 2 3 4
w (kg m 2 s 1)

0

2

4

6

8

10

12

14
(b)

1.0 0.8 0.6 0.4 0.2 0.0 0.2
change in w from rv = 0 s m 1

 simulation (kg m 2 s 1)

0

2

4

6

8

10

12

14

0 s m 1
200 s m 1
500 s m 1
1000 s m 1
2000 s m 1

(c)

Fig. 4. Vertical profiles of the factors in the integrand of the condensation integral (Equation 3) averaged over

columns exceeding the 99.9th percentile of𝐶 and plotted for simulations with different 𝑟𝑣: (a) the moist-adiabatic

moisture gradient (−𝑑𝑞∗𝑣/𝑑𝑧)ma masked to zero below the LCL, (b) the upward mass flux 𝜌𝑤̃, and (c) the change

in upward mass flux from the 𝑟𝑣 = 0 s m−1 simulation.

357

358

359

360

5. Understanding the dynamic contribution361

The dynamic contribution to 𝐶 of 0.23% per % increase in RH is larger than the thermodynamic362

contribution. With increasing 𝑟𝑣, Updrafts weaken the most in the lower troposphere, around 𝑧 = 2363

to 4 km (Figure 4b). Since this is above the LCL for each simulation and (𝑑𝑞∗𝑣/𝑑𝑧)ma is large364

in the lower-troposphere, the dynamic contribution is more substantial than the thermodynamic365

contribution.366

3𝐶, as defined in Equation (3), has units of kg m−2 s−1 but can be converted to mm/hr by dividing by the density of water, 𝜌𝑤 = 1000 kg m−3,
and multiplying by 1000 to convert from m to mm.
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To understand what causes this dynamic contribution, we begin by inspecting buoyancy profiles,367

𝐵(𝑧), averaged over columns exceeding the 99.9th-percentile value of 𝐶. Buoyancy is defined in368

SAM as369

𝐵 = 𝑔
𝑇 −𝑇env
𝑇env

(1+ 𝜖𝑣𝑞𝑣,env − 𝑞𝑛,env − 𝑞𝑝,env) +𝑔𝜖𝑣 (𝑞𝑣 − 𝑞𝑣,env) −𝑔(𝑞𝑛 + 𝑞𝑝 − 𝑞𝑛,env − 𝑞𝑝,env), (7)

where 𝑔 is the accelaration due to gravity, 𝜖𝑣 ≈ 0.61 is the ratio of water and dry air gas constants370

minus one, 𝑞𝑛 is the mixing ratio for non-precipitating condensates, 𝑞𝑝 is the mixing ratio for371

falling precipitation, and quantities with the “env” subscript are horizontal- and time-mean “envi-372

ronmental” profiles. SAM uses horizontal-mean environmental profiles that are time-dependent.373

We simplify Equation (7) by neglecting time variations of the environmental profiles. We also374

neglect 𝑞𝑝 and 𝑞𝑝,env in our calculation of buoyancy, even though 𝑞𝑝 can contribute substantial375

negative buoyancy within the cloud and in the boundary layer. We justify this simplification by376

assuming that in columns exceeding the 99.9th percentile of 𝐶, this negative buoyancy primarily377

acts to form and strengthen downdrafts in the lower troposphere. Just as we considered only378

updrafts in Equation (3) and in calculating the dynamic contribution, here we consider only the379

buoyancy that generates those updrafts.380

The changes in updrafts 𝑤̃ in the free troposphere can be broken into three distinct layers.385

Updrafts are weaker in drier simulations in the lower free troposphere (Fig. 5b), consistent with386

the loss of positive buoyancy. In a region between roughly 4 and 6 km, updrafts are roughly equal387

across all simulations. Above 6 km, updrafts are once again weaker in drier simulations.388

The buoyancy profiles in Fig. 5a suggest that the dynamic contribution is, like the thermodynamic389

contribution, mainly caused by changes in the LCL. To further investigate how buoyancy determines390

the updraft profiles, Fig. 5b compares 𝑤̃ profiles in high-percentile 𝐶 columns with 𝑤(𝑧) given by391

solving392

1
2
𝑑

𝑑𝑧
𝑤2 = 𝑎𝐵− 𝑎(𝜀 + 𝑏)𝑤2, (8)

following the recommendation of Jeevanjee and Romps (2016). The parameter 0 ≤ 𝑎 ≤ 1 corre-393

sponds to the back-reaction from the environment on the parcel as it accelerates. The parameter394

𝑏 > 0 represents the effect of different types of drag on a buoyant parcel besides the entrainment395

of momentum. Entrainment rates 𝜀(𝑧) are inferred from values of moist static energy in columns396
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Fig. 5. (a) Vertical profiles of buoyancy averaged over columns exceeding the 99.9th-percentile of𝐶. Triangles

indicate the level of free convection in these columns, defined as the height where buoyancy is zero. (b) Vertical

profiles of updrafts 𝑤̃ averaged over columns exceeding the 99.9th percentile of 𝐶. (c) Vertical profiles of

updrafts 𝑤 estimated from Equation (8). Results are shown for different values of 𝑟𝑣 as shown in the legend.

381

382

383

384

𝑟𝑣 (s m−1) 0 200 500 1000 2000

LCL (m) 635 829 1059 1351 1724

LFC (m) 641 839 1076 1401 1856

𝑤0 (m s−1) 0.3 0.3 0.5 0.9 1.4

Table 2. The lifted condensation level (LCL), level of free convection (LFC), and the updraft velocity 𝑤0 at

the LFC.

401

402

exceeding the 99.9th percentile of 𝐶, and different entrainment profiles were used for each sim-397

ulation. For the other two parameters, the same constant values of 𝑎 = 0.29 and 𝑏 = 0.59 km−1
398

were used for all simulations. The methodology for determining the entrainment rate, 𝑎, and 𝑏 is399

described in the Appendix.400

Equation (8) neglects mechanical lifting (e.g., from cold pools in the boundary layer), and so to403

estimate 𝑤̃ we integrate Equation (8) upwards from the level of free convection (LFC), defined as404

the height where 𝐵 = 0 in high-percentile 𝐶 columns (marked by triangles in Fig. 5a). Integrating405

Equation (8) below the LFC introduces negative buoyancy which would decrease our estimate of406

𝑤̃ with height in the lower troposphere. Furthermore, the LFC largely follows the LCL: the LFC is407

only 6 m above the LCL in the 𝑟𝑣 = 0 s m−1 simulation and 132 m above the LCL in the 𝑟𝑣 = 2000408
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s m−1 simulation (Table 2). Estimated 𝑤 profiles are initialized with an updraft velocity 𝑤0 equal409

to 𝑤̃ at that simulation’s LFC. Values for the LCL, LFC, and 𝑤0 in each simulation are reported in410

Table 2.411

Updraft profiles calculated from Equation (8) capture the decreasing updraft velocities in the412

lower troposphere as 𝑟𝑣 increases (Fig. 5c). The value of 𝑤0 does increase with increasing 𝑟𝑣, but413

Fig. 5c shows that this is overcome by the loss of buoyancy as the LCL rises, such that 𝑤 decreases414

in the lower troposphere. The updrafts retain a memory of the loss of buoyancy from the rising415

LCL over a depth of no more than (𝑎(𝜀 + 𝑏))−1 ≲ (𝑎𝑏)−1 = 4.6 km, and as a result differences416

between estimated 𝑤 gradually shrink and are smallest around 4− 6 km (Fig. 5b). Above this417

height, a small decrease in 𝐵 with drier simulations causes 𝑤 profiles to diverge from one another418

again. This pattern mirrors the three-layer structure observed in 𝑤̃, although 𝑤 profiles estimated419

using Equation (8) are more top-heavy than 𝑤̃ found in high-percentile 𝐶 columns. This may be420

related to using constant values of 𝑎 and 𝑏 with height, whereas in reality these parameters may421

change due to e.g., a change in a buoyant parcel’s aspect ratio (Jeevanjee and Romps 2016). This422

may also be related to assumptions in the entrainment rate, as discussed in the Appendix.423

Using 𝑤 estimated from Equation (8) in place of 𝑤̃ (except between the LCL and LFC) yields a424

dynamic contribution to changes in precipitation extremes of 0.23% per % change in RH, which425

is, surprisingly, identical to the actual dynamic contribution. If we repeat the plume calculation426

but only allow the LFC to change (holding the buoyancy profile and 𝑤0 at its 𝑟𝑣 = 0 s m−1 value),427

the dynamic contribution is 0.33% per % demonstrating that the loss of positive buoyancy from428

the rising LCL is more than enough to explain the dynamical contribution. Increases in 𝑤0, which429

may be related to stronger turbulent eddies in a deeper boundary layer with a larger surface sensible430

heat flux, somewhat offset this loss of positive buoyancy.431

6. Understanding changes in precipitation efficiency432

a. Diagnosing contributions to precipitation efficiency433

Precipitation efficiency is nearly three times as sensitive to near-surface RH as the condensation434

rate (Fig. 3). To understand what sets the precipitation efficiency, we take a similar approach to435

recent studies (Lutsko and Cronin 2018; Da Silva et al. 2021) that have estimated 𝜖𝑝 as the product436

of two efficiencies that respectively describe conversion of cloud condensates to precipitation (𝛼)437
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and the extent to which precipitation reaches the surface without re-evaporating (1− 𝛽):438

𝜖𝑝 ≈ 𝛼(1− 𝛽). (9)

The “conversion efficiency” 𝛼 ≡ 𝐴/𝐶 compares the vertically integrated rate that precipitation439

is generated in the cloud, 𝐴, to the vertically integrated rate of condensation, 𝐶. In SAM’s440

one-moment microphysics scheme (Khairoutdinov and Randall 2003), two processes generate pre-441

cipitation. The first process, autoconversion, activates when the mixing ratio of non-precipitating442

condensates 𝑞𝑛 exceeds a Kessler threshold 𝑞𝑛0, and takes the form4443 (
𝜕𝑞𝑝

𝜕𝑡

)
Auto

∝ max(0, 𝑞𝑛− 𝑞𝑛0). (10)

The second process, collection of condensates by falling precipitation, takes the form444 (
𝜕𝑞𝑝

𝜕𝑡

)
Accr

∝ 𝑞𝑛𝑞
𝑏𝑝

𝑝 . (11)

where 𝑞𝑝 is the mixing ratio for precipitating water and 𝑏𝑝 is an exponent unique to the precipitation445

type. We directly saved SAM’s microphysics tendencies from Equations (10) and (11), and used446

those tendencies to calculate 𝐴:447

𝐴 ≡
∫

0
𝜌

[(
𝜕𝑞𝑝

𝜕𝑡

)
Auto

+
(
𝜕𝑞𝑝

𝜕𝑡

)
Accr

]
𝑑𝑧, (12)

A similar approach was taken for the “sedimentation efficiency” 1− 𝛽, where 𝛽 ≡ 𝐸/(𝑃 + 𝐸)448

measures the proportion of the generated precipitation that re-evaporates in the column at a rate 𝐸449

and thus doesn’t contribute to the surface precipitation rate 𝑃. In SAM’s one-moment microphysics450

scheme, re-evaporation only occurs in locations where 𝑞𝑛 = 0 and takes the form451 (
𝜕𝑞𝑝

𝜕𝑡

)
Evap

∝ − 𝑓 (𝑇, 𝑞𝑝, 𝜌) (1−RH(𝑧)). (13)

4SAM defines different coefficients for different condensate phases (liquid and ice) and for different precipitation types (rain, snow, and graupel).
By the phrase “takes the form,” we mean that SAM calculates many similar terms with 𝑞𝑛 and 𝑞𝑝 partitioned by phase and type, using the
appropriate coefficients in each case, that are then summed together.
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Note that in Equation (13) RH(𝑧) is evaluated at a given height (whereas elsewhere in this paper452

RH refers specifically to the near-surface value).453

We directly saved SAM’s microphysics calculation of Equation (13) and used that value to454

calculate 𝐸 :455

𝐸 ≡
∫ 𝑧𝑡

0
𝜌

(
𝜕𝑞𝑝

𝜕𝑡

)
Evap

𝑑𝑧. (14)

The relation 𝜖𝑝 ≈ 𝛼(1− 𝛽) is exact if all precipitation generated either evaporates or reaches456

the surface (i.e., if 𝐴 = 𝑃 + 𝐸). However, this is only the case if we average the different terms457

horizontally and over a sufficiently long time (as done by Lutsko and Cronin (2018)) because (a)458

precipitation can be transported or detrained horizontally prior to reaching the surface and (b)459

condensation, conversion to precipitation, evaporation, and precipitation reaching the surface can460

all occur at different times in a given convective lifecycle. The issue of non-locality in time is461

exacerbated by the use of instantaneous snapshots to calculate 𝑃𝑒 and 𝐶𝑒, since that involves no462

time averaging at all.463

To mitigate the effects of non-locality in time, in this section we use 3-hourly averaged output464

(instead of instantaneous snapshots) to calculate 𝑃, 𝐶, 𝐴, and 𝐸 . We calculate 𝐴𝑒 as an average465

above the 99.9th percentile of 𝐴, as done in Da Silva et al. (2021). 𝐸𝑒, however, is calculated in466

columns that exceed the 99.9th percentile of 𝑃 under the assumption that re-evaporation occurs467

just before precipitation reaches the surface. Figure 6a shows the residual 𝐴𝑒 − (𝑃𝑒 +𝐸𝑒) is about468

4 to 5 mm hr−1 across the full range of simulations, which is roughly a quarter the size of 𝐴𝑒.469

b. Re-evaporation explains efficiency increase with increasing relative humidity476

Precipitation efficiency based on 3-hourly averaged values of 𝑃𝑒 and 𝐶𝑒 closely matches the477

instantaneous precipitation efficiency, with both spanning about 20 to 30% across the full range of478

simulations (Fig. 6b). Figure 6b also shows the 3-hourly averaged conversion efficiency 𝛼, and the479

sedimentation efficiency 1− 𝛽 as a function of RH. The sedimentation efficiency increases steadily480

with RH while the conversion efficiency is relatively constant with RH. The combination 𝛼(1− 𝛽)481

is close to but consistently larger than 𝜖𝑝. Much like the residual 𝐴𝑒 − (𝑃𝑒 +𝐸𝑒), the ratio between482

𝜖𝑝 and 𝛼(1− 𝛽) is an indirect measure of processes not accounted for in Equation (9), such as483

horizontal detrainment of falling precipitation.484
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Fig. 6. (a) Precipitation generation, 𝐴𝑒, and precipitation plus re-evaporation, 𝑃𝑒 +𝐸𝑒 as a function of RH for

3-hourly extremes averaged above the 99.9th percentile. (b) Conversion efficiency 𝛼, sedimentation efficiency

1− 𝛽, the product 𝛼(1− 𝛽), and precipitation efficiency 𝜖𝑝 as a function of RH, for 3-hourly averaged precipitation

extremes. Precipitation efficiency is also plotted for instantaneous (“inst.”) precipitation. In both panels, the

90% confidence interval is plotted as error bars based on block boostrapping. In panel (b), these error bars span

less than 2%.
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Fig. 7. Decomposition of fractional changes in the 3-hourly averaged precipitation efficiency into contributions

from the conversion efficiency 𝛼 and the sedimentation efficiency 1− 𝛽. Also shown for comparison is the

fractional change in instantaneous precipitation efficiency. All results are expressed as scaling rates with respect

to changes in near-surface RH. The 90% confidence intervals from block bootstrapping are plotted as error bars.

Note that 𝜖𝑝 is not connected to the other efficiencies because 𝛼(1− 𝛽) is an approximation of 𝜖𝑝 rather than part

of its decomposition.
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490

With the use of Equation (9), fractional changes in 𝜖𝑝 may be decomposed into fractional changes491

in 𝛼 and 1− 𝛽,492

𝛿𝜖𝑝

𝜖𝑝
=
𝛿𝛼

𝛼
+ 𝛿(1− 𝛽)

1− 𝛽
, (15)
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and this decomposition is plotted in Fig. 7. Changes in both the conversion and sedimentation493

efficiencies contribute, but changes in the sedimentation efficiency are much larger. The estimate494

𝛼(1− 𝛽) increases with RH at a rate of 0.86% per %, close to 0.81% per % fractional increase in495

3-hourly averaged 𝜖𝑝, implying our decomposition is reasonably accurate.496

We focus on the sedimentation efficiency since its contribution is much larger. Fractional changes497

in sedimentation efficiency can, in turn, be attributed to fractional changes in 𝐴 and 𝐸 :498

𝛿(1− 𝛽)
1− 𝛽

≈ 𝐸

𝑃

(
𝛿𝐴

𝐴
− 𝛿𝐸

𝐸

)
, (16)

where we have substituted in 1− 𝛽 = 𝑃/𝐴 and 𝛿(1− 𝛽) = 𝛿(1−𝐸/𝐴). Equation (16) is approximate499

because both of these substitutions assume that 𝑃 = 𝐴 − 𝐸 exactly. Equation (16) states that500

the fractional change in 1− 𝛽 is set by a balance between fractional changes in the amount of501

precipitation generated, 𝐴, and the amount of precipitation that re-evaporates while falling, 𝐸 .502

The contributions to 𝐴𝑒 and 𝐸𝑒 at different vertical levels across simulations with various 𝑟𝑣503

are shown in Fig. 8. As 𝑟𝑣 increases, the contribution to 𝐴𝑒 increases in the mid-troposphere504

but decreases in the lower free troposphere, while the contribution to 𝐸𝑒 increases throughout the505

boundary layer and lower free troposphere. Increases in 𝐸𝑒 with 𝑟𝑣 are a direct result of a deeper506

and drier boundary layer at high 𝑟𝑣, since re-evaporation is proportional to 1−RH(𝑧) per Equation507

(13) and is only non-zero outside of the cloud. When integrated vertically, these profiles yield an508

𝐴𝑒 that decreases relatively slowly with increasing 𝑟𝑣 and an 𝐸𝑒 that increases with increasing 𝑟𝑣.509

Thus changes in both 𝐴𝑒 and 𝐸𝑒 contribute to a decrease in 1− 𝛽 as 𝑟𝑣 is increased.510

Finally, we derive some scalings that show how sedimentation efficiency might be related to514

changes in near-surface RH. Given that evaporation in the subcloud layer will roughly scale with515

the amount of precipitation generated at higher vertical levels, and given the dependence of Equation516

(13) on 1−RH(𝑧), we approximate 𝐸 ∼ 𝐴(1−RH) such that 𝛽 = 𝐸/𝐴 ∼ (1−RH). Substituting517

this into Equation (16) gives that518

𝛿(1− 𝛽)
1− 𝛽

= −𝐸

𝑃

𝛿(1−RH)
1−RH

, (17)
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Fig. 8. Vertical profiles of (a) the precipitation re-evaporation rate (the integrand of Equation (14)) and (b) the

precipitation generation rate (the integrand of Equation (12)) for extremes averaged above the 99.9th percentile

in simulations with varying 𝑟𝑣 (see legend).

511

512

513

which directly relates changes in the sedimentation efficiency to changes in RH. The approximation519

𝐸𝑒 ∼ 𝐴𝑒 (1−RH) underestimates changes in 𝐸𝑒 (Fig. 9a), likely because it neglects the vertical520

variations of 𝑅𝐻 (𝑧) and the precipitation generation rate, as well as the detailed dependence of521

evaporation rate on terminal velocity and other microphysical factors.522

An alternate but related scaling is 𝑃 ∼ 𝐴RH.5 This scaling is simple and intuitive: 𝑃 ∼ 𝐴RH523

states that precipitation at the surface a) is directly proportional to the amount of condensation524

converted into precipitation aloft, and b) that drier boundary layers reduce surface precipitation525

(implicitly by increasing re-evaporation). Figure 9 shows that 𝑃𝑒 ∼ 𝐴𝑒RH is a better empirical fit526

5In the special case that these two scalings have slopes of 1, i.e. that 𝐸 ≈ 𝐴(1−RH) and 𝑃 ≈ 𝐴RH, these two scalings are identical so long as
𝑃 +𝐸 ≈ 𝐴.
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than 𝐴𝑒 (1−RH) is to 𝐸𝑒. Using 𝐴𝑒 ≈ 𝑃𝑒 +𝐸𝑒 we have the simple prediction that 1− 𝛽 ∼ RH and527

𝛿(1− 𝛽)
1− 𝛽

=
𝛿RH
𝑅𝐻

, (18)

i.e., that 1− 𝛽 scales with RH at a rate of 1% per %. Equation (18) is a modest overestimate of the528

actual scaling rate of sedimentation efficiency at 0.8% per %.529

Overall, these simple scalings are approximate but help by showing how the sedimentation530

efficiency and precipitation rate can be related to near-surface RH.531
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Fig. 9. (a) 𝐸𝑒 versus 𝐴𝑒 (1−RH) and (b) 𝑃𝑒 versus 𝐴𝑒RH for simulations with varying 𝑟𝑣 (legend). Dashed

lines show linear least-squares regression fits with an intercept forced to equal zero, and in each panel the slope

and root-mean square error (RMSE) of the fit is reported.

532

533

534

7. Conclusions535

Using a CRM run to states of RCE, we found that convective precipitation extremes are sen-536

sitive to near-surface RH: between our wettest and driest simulations, instantaneous precipitation537

extremes fractionally decrease by 1.1% for every 1% fractional decrease in near-surface RH. When538

normalized by absolute rather than fractional changes in RH, precipitation extremes are more539

sensitive to near-surface RH over drier surfaces. Specifically, scaling rates range from 1.4% per540
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%pt between our two wettest simulations (RH = 72%) to 2.5% per %pt between our two driest541

simulations (RH = 49%).542

Three distinct physical mechanisms, all associated with changes in near-surface RH, explain these543

scaling rates. First, a weak thermodynamic contribution is found in direct response to changes544

in the LCL, which follow from changes in near-surface RH (Section 4). Second, a dynamic545

contribution also depends on changes in the LCL because positive buoyancy is only realized above546

the cloud base (Section 5). Third, re-evaporation is proportional to a factor of 1−RH(𝑧), and so547

precipitation efficiency is much lower in simulations with deeper, drier boundary layers (Section548

6). These effects are illustrated schematically in Fig. 10.549

The above three physical mechanisms– involving changes in the LCL and changes in re-550

evaporation– are all distinct from mechanisms that have been used to explain the Clausius-551

Clapeyron scaling of precipitation extremes with warming. Clausius-Clapeyron scaling has been552

explained by relating precipitation extremes to near-surface temperatures via specific humidity, ei-553

ther through moisture convergence arguments (Trenberth 1999; Allen and Ingram 2002) or through554

simplifications of the condensation integral (O’Gorman and Schneider 2009; Abbott et al. 2020).555

All of these explanations rely on an assumption of constant RH, but the scaling rates calculated in556

this study suggest that a decrease in RH of 2.5% over a dry surface, or a decrease in RH of 4%557

over a moist surface, is sufficient to offset the effect of 1 K of warming and a Clausius-Clapeyron558

scaling rate of ∼ 6% K−1. Note our simulations already include the effect of surface warming as559

the surface dries when the free-tropospheric temperature is held constant (Fig. 1b). This warming,560

explained by the top-down model of the land-ocean warming contrast (Joshi et al. 2008; Byrne and561

O’Gorman 2013), would be in addition to the 1 K of surface warming mentioned above that warms562

the free troposphere (and thus increases (𝑑𝑞∗𝑣/𝑑𝑧)ma in Equation (3)).563

Overall, despite many differences including considering instantaneous or 3-hourly precipitation570

rather than daily precipitation, our study provides support, based on convection-resolving simu-571

lations, for the conclusion of Williams and O’Gorman (2022) that decreases in relative humidity572

are important for changes in summertime midlatitude precipitation extremes over land. Williams573

and O’Gorman (2022) considered whether such a correlation may be related to the dependence of574

convective inhibition (CIN)– negative buoyancy in the lower troposphere– on RH, since Chen et al.575

(2020) found that CIN increased as RH decreased and the LCL and LFC rose. While Williams576
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Fig. 10. A schematic showing three responses of the intensity of precipitation extremes to lower RH found

over a less evaporative surface. First, there is a direct thermodynamic response to the higher LCL assuming

condensation only occurs above the LCL. Second, updrafts (red arrows) are weaker in the lower troposphere,

also associated with the higher LCL, because rising parcels gain positive buoyancy above cloud base. Third,

re-evaporation of precipitation is greater due to a decrease in RH in the deeper sub-cloud layer. Each of these

changes weakens precipitation intensity over the drier surface.
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569

and O’Gorman (2022) did find a correlation between changes in seasonal-mean CIN and the dy-577

namical contribution to changes in precipitation extremes, the correlation was much weaker for578

CIN on the day of the precipitation event, casting doubt on the causality. Our results suggest an579

alternative cause: that updrafts weaken because of a decrease in positive buoyancy rather than an580

increase in negative buoyancy. However, CIN plays less of a role for convection in RCE compared581

to convection over midlatitude land (e.g., Markowski and Richardson 2010; Agard and Emanuel582

2017; Emanuel 2023), and thus further investigation of the midlatitude land case is warranted.583

We find that the dynamic contribution is smaller than the contribution from changes in precip-584

itation efficiency, whereas Williams and O’Gorman (2022) found a substantial dynamical con-585

tribution and did not consider a contribution from changes in precipitation efficiency. However,586

re-evaporation within downdrafts may be indirectly represented in the dynamical contribution of587
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Williams and O’Gorman (2022) because they evaluate the condensation integral with a lower bound588

of 𝑧 = 0 instead of 𝑧 = 𝑧LCL and allow for 𝑤 < 0. Their definition is the same as the condensation589

integral introduced by O’Gorman and Schneider (2009), but in this paper we use a different defini-590

tion (Equation (3)) that measures only condensation driven by updrafts above the cloud base. As a591

result of our alternate definition, we were able to separately diagnose changes in the precipitation592

efficiency resulting from changes in re-evaporation (Section 6).593

Our finding that decreases in RH weaken precipitation extremes seems to be at odds with a scaling594

analysis of observed variability by Lenderink et al. (2024) which found that precipitation extremes595

were stronger at lower RH for a given dewpoint temperature. Part of this result of Lenderink596

et al. (2024) is a statistical effect related to conditioning on wet hours only, but the result still597

persisted more weakly when all hours were considered. One possible reason for the discrepancy is598

that our simulations focus on changes in horizontal- and time-mean near-surface RH in a state of599

RCE whereas Lenderink et al. (2024) analyze weather variability in hourly near-surface RH. Such600

weather variability could allow environments with lower near-surface RH to correspond to greater601

convective instability or greater convective organization.602

Skinner et al. (2017) found in GCM simulations that stomatal closure causes widespread decreases603

in RH over land and decreases in mean precipitation in northern midlatitudes in summer, but that604

stomatal closure could actually increase mean and extreme precipitation in some regions of the605

deep tropics over land. These contrasting precipitation sensitivities in different regions suggest606

that large-scale dynamics may play an important role in the response of precipitation extremes to607

near-surface RH. Our results could be extended to include the influence of changing large-scale608

vertical velocity in future work by using a parameterization of the large-scale dynamics such as the609

weak-temperature gradient approximation (Sobel and Bretherton 2000; Raymond and Zeng 2005).610

In conclusion, we have shown how changes in near-surface RH affect the intensity of precipitation611

in the simplest statistical-equilibrium case of RCE. In future work, we plan to address the scaling612

of precipitation extremes across a wide range of different temperatures and humidities in a similar613

RCE setting. In addition to incorporating the role of large-scale circulation as discussed earlier,614

future work should also include simulations with a diurnal cycle, since convection over land is615

heavily influenced by the diurnal cycle. It would also be interesting to consider the case of organized616

convection which may respond differently to changes in surface RH.617
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APPENDIX618

Determining parameters in the plume vertical velocity equation619

The entrainment rates used in Section (5) were estimated by assuming that within extreme 𝐶620

columns (averaged above the 99.9th percentile), saturation frozen moist static energy (MSE) ℎ∗ is621

mixed with the environmental frozen MSE ℎenv following a bulk entraining plume:622

𝑑ℎ∗

𝑑𝑧
= −𝜀(𝑧) (ℎ∗− ℎenv). (A1)

Frozen MSE is defined following SAM thermodynamics as623

ℎ = 𝑐𝑝𝑇 +𝑔𝑧+ 𝐿𝑣𝑞𝑣 − 𝐿 𝑓 𝑞𝑛 (1−𝜔(𝑇)), (A2)

where 𝑐𝑝 is the specific heat at constant pressure, 𝑔 is gravity, 𝐿𝑣 and 𝐿 𝑓 are the latent heats of624

vaporization and fusion, respectively, and 𝜔(𝑇) is a partition function that SAM uses to distinguish625

between liquid and ice condensates (Khairoutdinov and Randall 2003). ℎ∗ is defined by replacing626

𝑞𝑣 with 𝑞∗𝑣 in Equation (A2). Based on this assumption, 𝜀 can be computed by inverting Equation627

(A1):628

𝜀 = −
(

1
ℎ∗− ℎenv

𝑑ℎ∗

𝑑𝑧

)
. (A3)

Figure A1 plots the entrainment rates estimated from high-percentile 𝐶. Above 6 km, ℎ∗ increases629

with height in high-percentile 𝐶 columns, which implies an unphysical 𝜀 < 0. Increasing ℎ∗ with630

height cannot be explained by a single entraining plume, but it can be explained by a spectrum of631

plumes with different entrainment rates (Zhou and Xie 2019). It is plausible that a spectral approach632

may improve upon the 𝑤 estimated from Equation (8), which is too strong in the region where ℎ∗633

increases with height. However, given our interest specifically in the lower free troposphere, we634

use a single bulk plume for its simplicity and set 𝜀 = 0 km−1 where it would otherwise be negative.635

This is a reasonable simplification to the extent that 𝜀 ≪ 𝑏 in the upper troposphere.636

Constant values for the parameters 𝑎 and 𝑏 were fit to the 𝑟𝑣 = 0 s m−1 simulation and were639

determined in two steps. First, 𝑏 was calculated using values for 𝑤̃, 𝐵, and 𝜀 at the height 𝑧max640

where 𝑤̃ achieves its maximum value, 𝑤̃max. At this height, the left hand side of Equation (8)641
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Fig. A1. Entrainment rates from extreme 𝐶 columns (averaged above the 99.9th percentile) calculated by

solving for 𝜀 in Equation (A1) for simulations with different 𝑟𝑣 (see legend).

637

638

vanishes, so that642

𝑏 =
𝐵(𝑧max)
𝑤̃2(𝑧max)

− 𝜀(𝑧max). (A4)

To determine 𝑎, we solved Equation (8) for a range of 𝑎 values between 0 and 1, using this value643

of 𝑏. We chose the value of 𝑎 that matched the maximum value of 𝑤 to the high-percentile 𝐶644

column’s maximum 𝑤̃. When choosing 𝑎, we did not require that 𝑤 achieved its maximum value645

at the same height 𝑧max as in the high-percentile 𝐶 column.646
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