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Accurate computation of moist available potential energy
with the Munkres algorithm
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The moist available potential energy (MAPE) of a domain of air is defined as the maximum
amount of kinetic energy that can be released through reversible adiabatic motions of its
air parcels. The MAPE can be calculated using a parcel-moving algorithm that finds the
minimum enthalpy state for a given set of thermodynamic assumptions. However, the
parcel-moving algorithms proposed previously do not always find the minimum enthalpy
state. In this article, we apply the Munkres algorithm to find the exact minimum enthalpy
state and compare this exact algorithm with four inexact algorithms, including a new divide-
and-conquer algorithm. The divide-and-conquer algorithm performs well in practice, while
being simpler and faster than the Munkres algorithm, and it is recommended for future
calculation of MAPE when the exact result is not required.
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1. Introduction

Lorenz (1955) introduced the concept of available potential
energy of a mass of dry air, which is the difference between
its enthalpy and the minimum possible enthalpy of a reversible
adiabatic rearrangement of the air. This is of interest, as the total
energy of a column of air is equal in the hydrostatic approximation
to the sum of its enthalpy and kinetic energy. Therefore any
decrease in enthalpy gives an increase in kinetic energy and
so the available potential energy of the air is the maximum
amount of kinetic energy that could be released under adiabatic
processes.

The (specific) enthalpy h of a parcel of dry air is fully determined
by giving its (specific) entropy s and pressure p. When parcels
are rearranged adiabatically and reversibly, they conserve their
entropy s. The dependence of h on s and p for dry air is such
that, for two different parcels at the same pressure level, raising
the parcel with greater entropy and lowering the parcel with
lesser entropy always decreases the total enthalpy of the two
parcels. (This can be seen by examining Eq. (5) for ∂h/∂p,
where virtual temperature is just the temperature for dry air
and using that temperature increases with entropy at constant
pressure.) As entropy is conserved under reversible, adiabatic
rearrangements, the minimum enthalpy state can be found by
sorting the parcels by their entropy. This matches our intuition
that hot (high-entropy) air rises. In particular, the only state
that is stable to small perturbations is the minimum enthalpy
state. Thus there is no computational difficulty in determining
the adiabatic rearrangement of a mass of dry air that minimizes
its enthalpy.

Subsequently, Lorenz (1978) introduced the moist available
potential energy (MAPE or, per Lorenz, MAE), in which he

removed the restriction that the air considered has no moisture.
Because latent heating is now accounted for, the MAPE of a
domain of air serves as an upper bound on the amount of
kinetic energy that is produced in the absence of radiative or
frictional heating. For hemispheric domains, accounting for
moisture increases the available potential energy by ∼35% in
both hemispheres according to reanalysis data (table S2 of
O’Gorman, 2010) and MAPE has been used to investigate the role
of moisture in the response of the extratropical storm tracks to
climate change (O’Gorman, 2010, 2011). For moist convection,
the release of the energy available for vertical motions is associated
with phase changes of water and therefore cannot be represented
with the dry available potential energy. Instead, MAPE has been
used as a generalization of convective available potential energy
(CAPE) with the advantage of accounting for both ascending
and descending air (Randall and Wang, 1992; Wang and Randall,
1994). MAPE is expected to be smaller in magnitude than the
integrated CAPE of parcels in the boundary layer (Emanuel,
1994). Lastly, alternative versions of MAPE that allow for latent
heating but limit moist convective instability have also been
considered for hemispheric domains (O’Gorman, 2010) and for
a tropical cyclone (Wong et al., 2015).

Computation of the MAPE of an air mass requires the ability
to determine its minimum enthalpy configuration, but this is
substantially more challenging than in the dry case. The reason
for this difficulty is that parcels now have two conserved quantities
(entropy and water content) instead of one, so that sorting by
the conserved quantities no longer produces an unambiguous
ordering. Furthermore, there can exist multiple states that are
stable to small perturbations; an algorithm that performs a local
search of the configuration space may find a local minimum but
miss the global minimum.
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Lorenz (1979) gave a ‘parcel-swapping’ algorithm for finding
a low-enthalpy configuration. Randall and Wang (1992)
demonstrated that Lorenz’s algorithm did not always produce the
minimal enthalpy configuration, by exhibiting a case (similar to
Case A below) in which Lorenz’s algorithm found the impossible
result of negative MAPE. Randall and Wang presented an
algorithm that did not give negative MAPE for this case, but
we will find below that it likewise does not always produce the
minimal enthalpy configuration. The inability to calculate the
MAPE exactly, or to estimate the magnitude of error associated
with existing algorithms rigorously, is a drawback for the use of
MAPE in studies of climate and weather.

In section 2, we formally state the problem of finding the
minimum enthalpy configuration. In section 3, we discuss the
Munkres algorithm (popularly known as the ‘Hungarian method’
and attributed to Kuhn (1955) and Munkres (1957), among
others), which always finds the minimum enthalpy configuration.
A recent independent study by Hieronymus and Nycander (2015)
uses the Munkres algorithm for an analogous problem in available
potential energy for the ocean. Also in section 3, we discuss the
algorithms of Lorenz (1979) and Randall and Wang (1992) as well
as a greedy algorithm that is equivalent to the top-down sorting
approach of Wong et al. (2015) and a new algorithm based on
divide-and-conquer. In section 4, we compare the accuracy and
speed of these algorithms for several test cases. In section 5, we
discuss the implications of our results.

2. Problem definition

Consider a domain of air with a fixed horizontal cross-section,
independent of height, with upper and lower boundaries of
the domain at some fixed pressures pmin and pmax, respectively.
Within this domain, the entropy s and total water mixing ratio w
(kilograms of water per kilogram of dry air) are known at each
position. We consider reversible adiabatic motions, which are
those that conserve s and w. Our goal is to find the adiabatic
rearrangement of the air in the domain that minimizes its
enthalpy; then the MAPE of the air in the domain is defined as its
enthalpy minus the enthalpy of the least enthalpy rearrangement.

We are interested in a discretized version of the problem, where
the domain is divided into a finite number n of parcels, each of
which has a state (si, wi), i = 1, . . . , n and each of which has the
same mass δM. Lorenz (1979) has shown that a staggered grid
may be used with the hydrostatic approximation to decompose
the atmosphere into a set of parcels of equal mass that are linearly
spaced in pressure. In this case, the difference in pressure from
one parcel to the next in a vertically stratified configuration is

δp = gδM/A, (1)

where g is the gravitational acceleration and A is the cross-
sectional area of the column. We define the pressures p1, . . . , pn

of the parcels by

pj = pmin + [j − (1/2)]δp. (2)

Then a configuration can be described fully by specifying which
pressure level pj the parcel i is at for each i, or equivalently which
parcel i is in pressure level pj for each j. This configuration can be
specified by giving a permutation σ of {1, . . . , n}, where, for each
i ∈ {1, . . . , n}, the parcel i is at pressure level pσ (i).

Now let hi,j be the enthalpy of a parcel of air with entropy si, total
water mixing ratio wi and pressure pj. Suppose the configuration
of the domain is given by σ . Then the enthalpy of the parcel i is
hi,σ (i) and the total enthalpy of the domain per unit mass is

H =
n∑

i=1

hi,σ (i). (3)

We wish to find the permutation σ that minimizes the value of H.

3. Algorithms

We developed multiple algorithms, the intention of which is to
compute a low-enthalpy configuration of an atmospheric domain;
we discuss several of them here. In addition, we discuss Lorenz’s
parcel-swapping algorithm and Randall and Wang’s variant.

We can compute the value of hi,j for every i and j using the
known thermodynamic properties of moist air (see the Appendix).
Our thermodynamic equations neglect ice for simplicity, but it
could be accounted for following Wang and Randall (1994).

In this section, ∂ph means the continuous derivative of h with
respect to pressure and �ph the discrete derivative, in both cases
holding s and w constant:

�ph = hi,j+1 − hi,j

pj+1 − pj
= hi,j+1 − hi,j

δp
. (4)

In the limit n → ∞, �p converges to ∂p.
The first law of thermodynamics and the ideal gas law give

dh = T ds + R∗Tv dp/p, where R∗ is the specific gas constant for
dry air and Tv is the virtual temperature (including the effect of
condensate), such that

∂ph = R∗Tv/p. (5)

For an alternative derivation of this, see Eq. (A17). Thus, ∂ph is
equal to specific volume, with units of m3 kg−1.

3.1. Munkres algorithm

Given the values of hi,j, the problem of finding the permutation
σ that minimizes the sum

∑n
i=1 hi,σ (i) is known in computer

science as the assignment problem and can be solved by the
Munkres algorithm. This algorithm is proven always to find the
optimal permutation for any values of hi,j and therefore makes
no assumptions about the thermodynamic properties of the air;
indeed, this algorithm was originally designed in the context
of transportation theory. The essential idea of the Munkres
algorithm is to try to assign parcels of air to pressure levels at
which they would have relatively low enthalpy, while keeping
track of the difficulty of finding a low enthalpy match for each
parcel of air and each pressure level. As these difficulties are
updated, the algorithm will adjust assignments previously made.

A slower version of the algorithm was introduced in Kuhn
(1955); the O(n3) version used here was introduced in Munkres
(1957). A modern presentation of the algorithm can be found in
Lawler (2001).

3.2. Greedy algorithm

The greedy algorithm proceeds from low pressure p1 to high
pressure pn; at each pressure pj, it chooses a parcel i to assign to
that pressure among those that have not been assigned already.
This assignment is done by choosing the remaining parcel that
maximizes ∂ph at pj. The aim of this choice is to ensure that a
lower enthalpy state would not result from swapping parcels that
are adjacent in pressure, but it does not guarantee that the lowest
possible enthalpy state is found globally. The greedy algorithm
is the same as the top-down sorting approach discussed in Wong
et al. (2015).

3.3. Lorenz’s algorithm

We reproduce here Lorenz’s parcel-swapping algorithm, pro-
posed in Lorenz (1979). As in the greedy algorithm, Lorenz’s
algorithm proceeds from low pressure p1 to high pressure pn, at
each step choosing a parcel from those that remain. To choose
a parcel to assign to pressure level pj, Lorenz first identifies the
parcels a and b among those that remain, such that parcel a max-
imizes the virtual temperature Tv at p1 and parcel b maximizes
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the virtual temperature Tv at pn. Then the algorithm chooses to
assign either parcel a or parcel b to pressure level pj, according to
which one maximizes �ph at pj.

As Lorenz observed, maximizing Tv at a fixed pressure is
the same as maximizing ∂ph (see Eq. (5)). Therefore Lorenz’s
algorithm can be rephrased in terms of only ∂ph and �ph (which
are equal in the limit of large n).

3.4. Divide-and-conquer algorithm

Our divide-and-conquer algorithm proceeds recursively by
dividing the domain into smaller subdomains. If there is only
a single parcel (n = 1), there is only one configuration possible.
Otherwise we divide the domain into two smaller parts. Let
m = floor((n + 1)/2), so that the pressure pm is halfway between
p1 and pn. Then we calculate ∂ph for all n parcels at the pressure
pm. We assign the m parcels with the highest values of ∂ph at
pm to the low-pressure subdomain from p1 to pm and the other
n − m parcels to the high-pressure subdomain pm+1 to pn. Then
we recursively perform the algorithm on the two subdomains p1

to pm and pm+1 to pn.

3.5. Randall and Wang’s algorithm

Randall and Wang (1992) proposed a variation of Lorenz’s
algorithm. This algorithm is designed never to produce a
configuration with higher enthalpy than the given initial
configuration. The algorithm starts with a given configuration
and successively modifies it by lifting parcels to the top of the
subdomain under consideration, shifting the intervening parcels
downwards; therefore the algorithm can give different minimum
enthalpy states depending on what the initial configuration is
(unlike the other algorithms). Further details can be found in
appendix B of Randall and Wang (1992). (Note that we do not
use the mass-flux approach discussed in their section 3.)

4. Comparison of algorithms

We discuss the configurations produced by these algorithms for
three test cases. Test cases A and B are taken from real-world data
and test case C is designed to illustrate the performance in the
face of multiple stable states. For each case, we ran each algorithm
and computed the enthalpy of the configuration found by the
algorithm. The difference between that enthalpy and the true
minimum possible enthalpy is termed the residual MAPE and
is displayed in Table 1. A perfect algorithm will always find the
true minimum and therefore have a value of 0 for each case. The
maximal possible residual MAPE is also listed for comparison.

Case A is based on a tropical sounding found in Randall and
Wang (1992), which had 37 parcels in the range 100–1000 hPa.
Randall and Wang used this sounding to demonstrate that their
algorithm can produce better (i.e. lower enthalpy) results than
Lorenz’s. We interpolated this sounding linearly to 1000 parcels
to give more robust results.∗ The true MAPE found by the
Munkres algorithm is 10.813 J kg−1 and a similar value is found by
the Randall and Wang algorithm, while the divide-and-conquer
algorithm finds slightly less. By contrast, the Lorenz and greedy
algorithms perform poorly and only find roughly half of the
MAPE.

∗Our implementations of Randall and Wang’s algorithm and Lorenz’s
algorithm gave results for the original 37 parcels that agree qualitatively
with the results found by the implementations of these algorithms due to
Randall and Wang. However, the small number of parcels made the results
very sensitive to the input and choice of thermodynamic constants and so
case A was generated by linearly interpolating w and s with respect to pressure
to give 1000 equal-mass parcels. The divide-and-conquer, Lorenz and greedy
algorithms all produced significantly better results on the interpolated data
than the non-interpolated data; we generally do not expect that interpolating
other data sets would have this same effect. Above 150 parcels, our results were
not very sensitive to the number of parcels used.

Table 1. Residual MAPE is defined as the enthalpy of the configuration found by
each algorithm minus the true minimum possible enthalpy; it is the amount of
MAPE left over after each algorithm extracted as much as it could. Lower values
indicate that the algorithm found a lower enthalpy configuration, with zero the
best possible result. The residual MAPE for the minimal, maximal and initial

configurations, the first of which is 0 by definition, is shown for comparison.

Residual MAPE (J kg−1) Computation time (s)

A B C A B C

Munkres 0 0 0 23.16 70.99 14.85
Divide and conquer 0.391 0.000414 0 0.10 0.18 0.07
Randall and Wang < 10−4 0.00645 95.3 17.22 47.55 6.29
Greedy 5.90 0.00645 95.3 12.49 30.62 2.36
Lorenz 5.90 0.510 95.3 0.10 0.15 0.02
Minimal enthalpy 0 0 0 – – –
Initial configuration 10.8 200 100 – – –
Maximal enthalpy 2250 8690 100 – – –

Case B is taken from NCEP2 reanalysis (Kanamitsu, 2002) and
is a zonal and time average over June–July–August 1981–2000.
The temperature and humidity are sampled at 40 latitudes
poleward of 20◦N and the latitudes are spaced to give equal
surface area in each latitude band. Each latitude is sampled
at 40 pressures from 50–1000 hPa, staggered with respect to
other latitudes following the approach of Lorenz (1979); in total
there are 1600 parcels. This case was previously considered in
O’Gorman (2010), but taking into account the effect of ice.†

The minimal enthalpy configuration is shown in Figure 1. We
see that there is a discontinuity in the pressure levels in the
minimum state, as some very moist parcels appear above 400 hPa,
while some slightly less moist parcels appear below 700 hPa. The
convection of these moist parcels upwards relative to the initial
configuration lowers the enthalpy of the system substantially. All
of the algorithms find a similar discontinuity in pressure and are
able to liberate most of the initial MAPE, but disagree slightly on
the exact number of parcels that should be lifted and thus have
small differences in MAPE.

Case C is a minimal example to illustrate the difficulty with
multiple states that are stable to small perturbations. This case
involves 900 dry parcels and 100 wet parcels in the range
400–650 hPa with δp = 0.25 hPa (all parcels have equal mass).
The dry parcels contain no water and have a temperature at
105 Pa of 375 K; the wet parcels are one third water by molar
fraction (w = 0.311 kg kg−1) and have a temperature at 105 Pa
of 335 K. Note that all dry parcels have the same s and w and
all wet parcels have the same s and w. Figure 2 displays ∂ph as a
function of pressure for the dry and wet parcels and can be used
to infer the parcel configuration of the minimal enthalpy state.
As parcels with higher ∂ph than their environment tend to rise,
we see that wet parcels above 450 hPa will tend to rise relative to
dry parcels, while those below 450 hPa will tend to fall relative to
dry parcels. Therefore any state with wet parcels at the extreme
top and bottom and dry parcels in between is stable against small
perturbations and there are 101 such stable states. To determine
which of these has the least enthalpy, notice that the change of
enthalpy of switching a wet and dry parcel at different pressure
levels is given by the area between the curves and between those
pressure levels in Figure 2, so the maximal reduction of enthalpy is
achieved by moving the wet parcels to the bottom (650–625 hPa),
where the curves are farthest apart. The Lorenz, Randall and Wang
and greedy algorithms all instead find the configuration with the
wet parcels at the top, which has the highest enthalpy of any state
that is stable to small perturbations, nearly the highest enthalpy

†O’Gorman (2010) reported that the Lorenz algorithm gave better results than
the Randall and Wang algorithm for case B with ice, but this was because
of an error in implementation of the Randall and Wang algorithm and in
fact both algorithms give very similar results for case B with ice. Using the
divide-and-conquer algorithm introduced here does not alter the results in
O’Gorman (2010, 2011) substantially.

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 288–292 (2017)



Munkres Algorithm for Moist Available Energy 291

Tem
perature (K) at 1000 hPa

280
290

300
310

320

Water content (kg kg–1)

0.0000.0030.0060.0090.0120.015

P
re

ss
ur

e 
(h

P
a)

1000

800

600

400

200

(a)

280290300310320

Temperature (K) at 1000 hPa

200

300

400

500

600

700

800

900

1000

P
re

ss
ur

e 
(h

P
a)

(b)

Figure 1. Minimal enthalpy configuration of case B, which is based on a zonal and time mean poleward of 20◦N in the NCEP2 reanalysis during JJA. The configuration
is shown in (a) as the relationship between pressure, water content (w) and the temperature each air parcel would have at 105 Pa and similarly in (b), but omitting
water content. Hot, dry parcels with temperatures from 320–500 K are not shown; these parcels correspond to upper-tropospheric and stratospheric air. In the initial
configuration, there is no discontinuity in pressure as a function of water content and temperature at 105 Pa, but in the minimal enthalpy configuration there is
a discontinuity due to a section of particularly wet, warm air parcels convecting upwards. Except for these parcels, (b) shows that the pressure in the minimum
enthalpy state is almost a monotonic function of the temperature that the parcels would have at 105 Pa. The exact configuration shown is calculated using the Munkres
algorithm, but all algorithms tested produce a qualitatively similar result in this case.
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Figure 2. ∂ph as a function of pressure for dry (solid) and wet (dashed) parcels in
case C, which is a minimal example of a case with multiple stable states. Note that
∂ph equals specific volume. The values of ∂ph coincide near 450 hPa, so at lower
pressures wet parcels will rise relative to dry parcels and at higher pressures they
will fall. Therefore there are multiple stable configurations, as wet parcels can go
to either the top or the bottom of the domain. The configuration with all wet
parcels at the bottom has the least enthalpy, but the Lorenz, greedy and Randall
and Wang algorithms prefer to put the wet parcels at the top.

of any state at all and much higher than would be found by
arranging the parcels randomly. (Random arrangements in case
C tend to have an enthalpy near the average of the minimum
and maximum enthalpies.) Indeed, if these algorithms were used
to estimate the MAPE of the initial configuration of case C, the
result would be off by a factor of 21.3. (The initial configuration
for case C was decided to be the configuration with maximal
enthalpy. This choice only matters for running the Randall and
Wang algorithm and has no effect on the other algorithms.)

The computation times for the different algorithms are
also given in Table 1. In every case examined, Lorenz’s
algorithm and divide-and-conquer are substantially faster than
the other algorithms. Asymptotically, the running time of Lorenz’s
algorithm is O(n), that of divide-and-conquer O(n log n), that of
the greedy algorithm and Randall and Wang’s algorithm O(n2)
and that of the Munkres algorithm O(n3).

5. Discussion

Of these five, which algorithm should be used to compute the
moist available potential energy of a domain of air? When accuracy

is necessary, the Munkres algorithm should be used, as it is the
only one of these algorithms that is proven to always compute
the minimal enthalpy configuration; in all other cases, the divide-
and-conquer algorithm should be used on account of its speed,
simplicity, ease of coding and generally high accuracy.

The difference in accuracy between the Munkres and divide-
and-conquer algorithms relative to the others considered can be
related to whether the algorithm immediately begins assigning
parcels to pressure levels or defers all assignment until the end
of the algorithm. The latter is necessary for two reasons. First,
assigning a parcel to some pressure level prevents other parcels
from being assigned to that same pressure level, so that all parcels
must be considered together. Second, due to the thermodynamics
of moist parcels, which exhibit different behaviour above and
below their condensation level and therefore may have multiple
stable levels, all pressure levels must be considered together.
Algorithms that begin assigning parcels to pressure levels before
having considered the whole scenario in its entirety may, like the
Lorenz, greedy and Randall and Wang algorithms, be vulnerable
to overlooking low-enthalpy arrangements.

The availability of the Munkres algorithm to calculate the exact
MAPE puts the use of MAPE for studies of the atmosphere on
a firmer footing. Our results for case B suggest that previous
calculations of MAPE for hemispheric-scale domains were not
seriously compromised by use of the approximate parcel-moving
algorithms, although cases A and C clearly show that problems
can arise and that the divide-and-conquer algorithm seems to be
the best available fast algorithm at present.

The Munkres algorithm cannot be adapted for cases where the
parcels have different masses. In this situation, we recommend
either using another algorithm or regridding (using e.g. linear
interpolation) the data so that the parcels have the same mass. The
regridded parcel size should be not much bigger than the smallest
starting parcel size, so the regridding process may increase the
number of parcels if the initial parcels were of widely varying sizes.

Recently, Hieronymus and Nycander (2015) applied the
Munkres algorithm to find the minimum potential energy of
a domain in the ocean and compared it with several approximate
methods. What they call Huang’s algorithm (Huang, 2005) is
analogous to the greedy algorithm. Hieronymus and Nycander
find that the Munkres algorithm is too slow to use on their
largest data sets and it would be worth investigating whether the
divide-and-conquer algorithm introduced here may be adapted
to large oceanic data sets.

We thank a reviewer for bringing to our attention the recent
work of Su and Ingersoll (2016), which discusses an exact
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algorithm that they find runs faster than the Munkres algorithm
for 3D grids with few distinct pressure levels. It may be possible to
use a similar approach to speed up the exact calculation of MAPE
for 2D or 3D domains in the atmosphere.

All code and data needed to duplicate our results are found at
https://github.com/estansifer/mape/.
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Appendix A: Thermodynamic equations

We define the following constants (from Haynes et al., 2013):

R = 8.3145 J mol−1 K−1, universal gas constant, (A1)

cd = 29.162 J mol−1 K−1, heat capacity of dry air, (A2)

cv = 33.689 J mol−1 K−1, heat capacity of water vapour,
(A3)

cl = 75.522 J mol−1 K−1, heat capacity of liquid water,
(A4)

Md = 0.028959 kg mol−1, molecular weight of dry air,
(A5)

Mw = 0.018015 kg mol−1, molecular weight of water (A6)

and ε = Mw/Md. All heat capacities are at constant
pressure.

Let es(T) be the saturation vapour pressure of water at
temperature T. Then we assume the Clausius–Clapeyron relation,
which states that

es(T) = pc exp([(cv − cl)/R] ln(T/Tc) − Lc/(RT)), (A7)

where the constants have values

pc = 3.2238 × 1013 Pa, (A8)

Tc = 283.15 K, (A9)

Lc = 56481 J mol−1. (A10)

Let w be the water content of a parcel of air, in kilograms of water
per kilogram of dry air. Define

ws = ε
es

p − es
,

L = RT2

es

des

dT
= (cv − cl)T + Lc.

For a saturated parcel, ws measures the water vapour content in
kilograms of water vapour per kilogram of dry air. Note that L is
the latent heat of condensation of water per mole.

Now, for unsaturated and for saturated parcels, respectively,
we define the specific entropy s as

Md(1 + w)s = [cd + (w/ε)cv] ln(T/T0)

− R[1 + (w/ε)] ln(p/p0)

+ R[1 + (w/ε)] ln[1 + (w/ε)]

− R(w/ε) ln(w/ε),

(A11)

Md(1 + w)s = [cd + (w/ε)cv] ln(T/T0)

− R[1 + (w/ε)] ln(es/p0)

+ R ln(ws/ε) + (L/T)(ws − w)/ε.

(A12)

T0 and p0 are arbitrary reference values for temperature
and pressure. The condition for whether a parcel is saturated
is whether w ≥ ws. The equations agree on the value of s at
saturation, that is at ws = w.

Given the values of s, p and w for a parcel, these above equations
can be solved for temperature T; the solution is unique.

Now, for unsaturated and saturated parcels, respectively, we
define the specific enthalpy h as

Md(1 + w)h = [cd + (w/ε)cv]T, (A13)

Md(1 + w)h = [cd + (w/ε)cv]T + L(ws − w)/ε. (A14)

Again, these agree on the value of h at saturation. Note that Eqs
(A11)–(A14) are consistent with eqs (11)–(14) of Lorenz (1979).

With some work, we are able to compute ∂ph. For unsaturated
parcels,

Md(1 + w)∂ph = R[1 + (w/ε)]T/p (A15)

and for saturated parcels,

Md(1 + w)∂ph = R[1 + (ws/ε)]T/p. (A16)

Thus, in both cases,

∂ph = RTv

Mdp
, (A17)

where Tv is virtual temperature and thus ∂ph is equal to specific
volume. Recall that R/Md is the specific gas constant of dry air
and so this agrees with Lorenz’s equations (17) and (18).

References

Emanuel KA. 1994. Atmospheric Convection. Oxford University Press: Oxford,
UK.

Haynes WM. (ed.) 2013. CRC Handbook of Chemistry and Physics. CRC press:
Boca Raton, FL.

Hieronymus M, Nycander J. 2015. Finding the minimum potential energy state
by adiabatic parcel rearrangements with a nonlinear equation of state: An
exact solution in polynomial time. J. Phys. Oceanogr. 45: 1843–1857.

Huang RX. 2005. Available potential energy in the world’s oceans. J. Mar. Res.
63: 141–158.

Iribarne JV, Godson WL. 2012. Atmospheric Thermodynamics, Kluwer
Academic Publishers: Dordrecht.

Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter
GL. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc.
83: 1631–1643.

Kuhn HW. 1955. The Hungarian method for the assignment problem. Nav.
Res. Logist. Q. 2: 83–97.

Lawler EL. 2001. Combinatorial Optimization: Networks and Matroids. Courier
Corporation: Mineola, NY.

Lorenz EN. 1955. Available potential energy and the maintenance of the general
circulation. Tellus 7: 157–167.

Lorenz EN. 1978. Available energy and the maintenance of a moist circulation.
Tellus 30: 15–31.

Lorenz EN. 1979. Numerical evaluation of moist available energy. Tellus 31:
230–235.

Munkres J. 1957. Algorithms for the assignment and transportation problems.
J. Soc. Ind. Appl. Math. 5: 32–38.

O’Gorman PA. 2010. Understanding the varied response of the extratropical
storm tracks to climate change. Proc. Natl. Acad. Sci. U.S.A. 107:
19176–19180.

O’Gorman PA. 2011. The effective static stability experienced by eddies in a
moist atmosphere. J. Atmos. Sci. 68: 75–90.

Randall DA, Wang J. 1992. The moist available energy of a conditionally
unstable atmosphere. J. Atmos. Sci. 49: 240–255.

Su Z, Ingersoll AP. 2016. On the minimum potential energy state and the
eddy-size-constrained APE density. J. Phys. Oceanogr. 46: 2663–2674.

Wang J, Randall DA. 1994. The moist available energy of a conditionally
unstable atmosphere. Part II: further analysis of GATE data. J. Atmos. Sci.
51: 703–710.

Wong KC, Tailleux R, Gray SL. 2016. The computation of reference state and
APE production by diabatic processes in an idealized tropical cyclone. Q. J.
R. Meteorol. Soc. 142: 2646–2657, doi: 10.1002/qj.2854.

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 288–292 (2017)


