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1 Training details

In each iteration, the autoencoder processes 8192 input samples, with 4096 from
the control climate and 4096 from the +4 K climate. The reconstruction loss is computed
on the full batch, and the latent alignment loss is evaluated between the control and +4 K
samples. In the mean time, the downstream prediction loss is calculated using only la-
beled control-climate data. The final loss is a weighted sum of reconstruction loss, la-
tent alignment loss and prediction loss to enable joint updates of the autoencoder and
predictor.

The model is optimized using the AdamW optimizer with learning rates of 3x1073
and and a weight decay of 1073 for both the autoencoder and the MLP predictor. A learn-
ing rate scheduler with exponential decay and 4000 linear warm up steps is applied to
both learning rates. Training is run for 30 epochs.

After initial tests on generalization performance, hyperparameters are selected through
a sweep aimed at balancing latent alignment and predictive accuracy. The weight on the
latent alignment loss, Agmp, was chosen as the largest value that did not lead to latent
space collapse, which we define as the average standard deviation of the latent represen-
tations falling below 0.1. Values of Agyp ranging from 10~! to 1075 were tested, and
AeMp = 107% was selected as the largest stable value. The weight on the supervised
prediction loss, Apred, Was progressively decreased from 1 to 0.001. Since Liota1 depends
on this weighting, we effectively selected Aprea by minimizing the unweighted combina-
tion of the underlying loss terms. For Apeq values between 1 and 0.01, Lpeq varies by
less than 5% at the end of training, and L econstruction remains small (< 107%). Inter-
estingly, EMD(Zy, Z14x ) decreases when Lycconstruction Pecomes smaller, presumably be-

cause better reconstructions more strongly constrain the latent space. Consequently, EMD(Zy, Z14x)

reaches its minimum when Apeq is set to 0.01. Further decreasing Apreq below 0.01 led
to an increase in Lpreq. Therefore, the best-performing configuration used Apreqa = 0.01.
This combination provided a stable latent alignment without compromising predictive

performance on the labeled control-climate data.

For the alternative version of our analysis (results shown in Fig. 3) and to enable
direct comparison with Beucler et al. (2024), we fine-tuned the Agmp parameter to ac-
count for the modified input/output configuration. We found that we could use a larger
AeMD to strengthen alignment, stopping before latent space collapse (defined as std <
0.1). We selected Agmp = 1072 as the largest value that preserved sufficient latent vari-
ability.

For the baseline models, they are the same as CERA without the autoencoder. We
used the same learning rate (3x1072 and and a weight decay of 10~3) for training the
baseline models.

2 Formula for instantaneous surface precipitation rate

The instantaneous surface precipitation rate for both the ML models and the high-
resolution simulation is computed by vertically integrating the microphysical tendency
of total condensate, gr_mic, with density weighting:

Prog(z = 0) = — / P0G micd. (1)
0



50 For simplicity, we exclude the surface ice sedimentation flux, which is typically small.
51 This formulation is similar to Equation S6 of Yuval et al. (2021), but we note that their
52 equation omits a negative sign.
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