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1 Training details9

In each iteration, the autoencoder processes 8192 input samples, with 4096 from10

the control climate and 4096 from the +4K climate. The reconstruction loss is computed11

on the full batch, and the latent alignment loss is evaluated between the control and +4K12

samples. In the mean time, the downstream prediction loss is calculated using only la-13

beled control-climate data. The final loss is a weighted sum of reconstruction loss, la-14

tent alignment loss and prediction loss to enable joint updates of the autoencoder and15

predictor.16

The model is optimized using the AdamW optimizer with learning rates of 3×10−3
17

and and a weight decay of 10−3 for both the autoencoder and the MLP predictor. A learn-18

ing rate scheduler with exponential decay and 4000 linear warm up steps is applied to19

both learning rates. Training is run for 30 epochs.20

After initial tests on generalization performance, hyperparameters are selected through21

a sweep aimed at balancing latent alignment and predictive accuracy. The weight on the22

latent alignment loss, λEMD, was chosen as the largest value that did not lead to latent23

space collapse, which we define as the average standard deviation of the latent represen-24

tations falling below 0.1. Values of λEMD ranging from 10−1 to 10−5 were tested, and25

λEMD = 10−4 was selected as the largest stable value. The weight on the supervised26

prediction loss, λpred, was progressively decreased from 1 to 0.001. Since Ltotal depends27

on this weighting, we effectively selected λpred by minimizing the unweighted combina-28

tion of the underlying loss terms. For λpred values between 1 and 0.01, Lpred varies by29

less than 5% at the end of training, and Lreconstruction remains small (< 10−4). Inter-30

estingly, EMD(Z0, Z+4K) decreases when Lreconstruction becomes smaller, presumably be-31

cause better reconstructions more strongly constrain the latent space. Consequently, EMD(Z0, Z+4K)32

reaches its minimum when λpred is set to 0.01. Further decreasing λpred below 0.01 led33

to an increase in Lpred. Therefore, the best-performing configuration used λpred = 0.01.34

This combination provided a stable latent alignment without compromising predictive35

performance on the labeled control-climate data.36

For the alternative version of our analysis (results shown in Fig. 3) and to enable37

direct comparison with Beucler et al. (2024), we fine-tuned the λEMD parameter to ac-38

count for the modified input/output configuration. We found that we could use a larger39

λEMD to strengthen alignment, stopping before latent space collapse (defined as std <40

0.1). We selected λEMD = 10−3 as the largest value that preserved sufficient latent vari-41

ability.42

For the baseline models, they are the same as CERA without the autoencoder. We43

used the same learning rate (3×10−3 and and a weight decay of 10−3) for training the44

baseline models.45

2 Formula for instantaneous surface precipitation rate46

The instantaneous surface precipitation rate for both the ML models and the high-47

resolution simulation is computed by vertically integrating the microphysical tendency48

of total condensate, qT mic, with density weighting:49

Ptot(z = 0) = −
∫ ∞

0

ρ0qT micdz. (1)
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For simplicity, we exclude the surface ice sedimentation flux, which is typically small.50

This formulation is similar to Equation S6 of Yuval et al. (2021), but we note that their51

equation omits a negative sign.52
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