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Key Points:

« CERA improves generalization across climates via climate-invariant representa-
tions, outperforming raw-input and physics-informed baselines.

 Latent alignment using Earth Mover’s Distance improves both predictive accu-
racy and robustness across random seeds.

e The framework is tested on a parameterization of moist processes, but has poten-
tial for other climate applications such as downscaling.

Corresponding author: Shuchang Liu, shuchang.liu@hotmail.com



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Abstract

Robust generalization under climate change remains a major challenge for machine learn-
ing applications in climate science. Most existing approaches struggle to extrapolate be-
yond the climate they were trained on, leading to a strong dependence on training data
from model simulations of warm climates. Use of climate-invariant inputs improves gen-
eralization but requires challenging manual feature engineering. Here, we present CERA
(Climate-invariant Encoding through Representation Alignment), a machine learning frame-
work consisting of an autoencoder with explicit latent-space alignment, followed by a pre-
dictor for downstream process estimation. We test CERA on the problem of parame-
terizing moist-physics processes. Without training on labeled data from a +4 K climate,
CERA leverages labeled control-climate data and unlabeled warmer-climate inputs to
improve generalization to the warmer climate, outperforming both raw-input and phys-
ically informed baselines in predicting key moisture and energy tendencies. It captures

not only the vertical and meridional structures of the moisture tendencies, but also shifts
in the intensity distribution of precipitation including extremes. Ablation experiments
show that latent alignment improves both accuracy and the robustness across random
seeds used in training. While some reduced skill remains in the boundary layer, the frame-
work offers a data-driven alternative to manual feature engineering of climate invariant
inputs. Beyond parameterizations used in hybrid ML-physics systems, the approach holds
promise for other climate applications such as statistical downscaling.

Plain Language Summary

Predicting how the atmosphere will behave in a warmer world is one of the biggest
challenges in climate science. While machine learning has shown promise in improving
weather and climate models, most approaches struggle to work reliably outside the cli-
mate conditions they were trained on. In this study, we introduce CERA (Climate-invariant
Encoding through Representation Alignment), a machine learning method designed to
improve performance under climate change. CERA first learns a shared internal repre-
sentation of the atmosphere using data from both present-day (control) and warmer (44 °C)
climates, without training on any outputs from the warmer climate. A second stage of
the model then learns to predict key atmospheric processes using only outputs from the
control climate. CERA makes more accurate predictions under warming than models
that rely on raw inputs or manually engineered physical features. CERA offers a flex-
ible, data-driven alternative to previous approaches to climate-change generalization. We
apply CERA to moist physics processes in the atmosphere (including deep convection),
but it holds potential for broader uses in climate science such as for estimating higher-
resolution climate fields from coarse model output.

1 Introduction

Machine learning (ML) has emerged as a powerful tool for advancing weather and
climate science (Chantry et al., 2021; Eyring et al., 2024; Schneider et al., 2022; Nguyen
et al., 2023; Bracco et al., 2025). It has been applied across a wide range of tasks, such
as weather forcasting (Weyn et al., 2021; Bi et al., 2022; Kurth et al., 2023; Lam et al.,
2023; McNally et al., 2024; Kochkov et al., 2024; Price et al., 2025), parameterization
of subgrid processes (O’Gorman & Dwyer, 2018; Gentine et al., 2018; Brenowitz & Brether-
ton, 2018; Yuval & O’Gorman, 2020), emulation of global climate models (Cachay et al.,
2024; Chapman et al., 2025; Watt-Meyer et al., 2025), bias-correction of weather and cli-
mate models (Watt-Meyer et al., 2021; Bretherton et al., 2022; Bora et al., 2023; Gre-
gory et al., 2025; Chapman & Berner, 2025) and statistical downscaling (Rampal et al.,
2022; Hobeichi et al., 2023; Flora & Potvin, 2025). In particular, ML-based parameter-
izations have shown promise in representing the effects of complex subgrid processes such
as moist convection and boundary-layer turbulence by training on high-resolution model
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data (Brenowitz & Bretherton, 2018; Yuval & O’Gorman, 2020; Han et al., 2023) or ob-
servations (Zhao et al., 2019; McCandless et al., 2022).

Despite this promise, a persistent challenge for ML models in climate applications
is their limited generalization to out-of-distribution conditions. This problem is especially
acute under climate change, where shifts in temperature, moisture, and circulation pat-
terns can push the system into regimes not well represented in the training data. For in-
stance, ML parameterizations trained on present-day conditions often perform poorly
when evaluated in warmer climates, leading to inaccurate predictions of precipitation and
subgrid tendencies (O’Gorman & Dwyer, 2018; Rasp et al., 2018; Scher & Messori, 2019).
This generalization gap limits the reliability and robustness of ML-based tools in climate
change scenarios, precisely where improved predictions are most needed.

Several approaches have been proposed to improve performance in different climates.
The most straightforward approach is to train ML models on high-resolution model out-
put across multiple climates, so that the learned representation is implicitly exposed to
climatic variability (O’Gorman & Dwyer, 2018; Rasp et al., 2018; Clark et al., 2022; Sun
et al., 2024; Bodnar et al., 2025), although this implies a strong reliance on the quality
of the high-resolution model output in different climates which is difficult to validate us-
ing observations. Also there is a need to ensure the training data covers a sufficiently
wide range of climates for the application at hand. Another strategy is to incorporate
physics-based constraints, such as conservation of energy and moisture, non-negativity
of precipitation, or constraints based on known thermodynamic relationships which may
improve generalization (Brenowitz et al., 2020; Kashinath et al., 2021; Yuval et al., 2021;
Perezhogin et al., 2025). In addition, Beucler et al. (2024) proposed a climate-invariant
feature engineering framework, in which input variables are transformed (e.g., from spe-
cific humidity and temperature to relative humidity and plume buoyancy) to reduce their
distribution shift under climate forcing. While such physically motivated transformations
have shown promise, they rely on hand-crafted features derived from expert knowledge.
These transformations often require time-consuming trial-and-error tuning and may not
yield optimal solutions, as they could sacrifice important information in pursuit of ap-
proximate climate invariance. Moreover, some approaches assume access to labeled out-
puts from future climates, which may not be available in practice, especially when us-
ing real-world observations.

In this study, we introduce a third path: learning climate-invariant structure di-
rectly from data, without relying on expert-designed features or supervision from warmer-
climate labels. Our model consists of an autoencoder (AE) and a multilayer perceptron
(MLP) trained jointly in an end-to-end fashion. The AE learns a latent representation
of the input profiles, while the MLP predicts subgrid thermodynamic tendencies from
this latent code. Inputs from both present-day and 4+4 K warmer climates are used to
train the AE, but the MLP is supervised only using control-climate outputs. To ensure
that the latent space remains aligned across climates, we introduce a distributional reg-
ularization term based on the Earth Mover’s Distance (EMD) (Rubner et al., 2000), which
penalizes divergence between the latent encodings of control and +4 K inputs.

The results show that our method achieves comparable or better performance than
approaches based on hand-crafted physical inputs, without requiring any outputs from
warmer climate conditions. We do still need inputs from the warmer climate, and in prac-
tice these could be obtained from climate-model simulations or potentially a pseudo-global
warming approach applied to observations (Schér et al., 1996). By not requiring outputs,
and in particular the relationship between inputs and outputs, in the warmer climate,
we are reducing dependence on high-resolution model output in a warmer climate. This
highlights the potential of our method as a data-driven strategy for improving general-
ization in climate ML.
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We test our approach on the problem of parameterization of subgrid moist processes
in the atmosphere using the neural-network parameterization of Yuval et al. (2021). We
consider a +4 K warming as a stringent test of generalization, but we emphasize that a
useful application in practice could be for a much smaller magnitude of warming. For
example, one could train on recent decades and potentially use climate-invariance to im-
prove generalization for a modest warming over the subsequent few decades or to im-
prove robustness to extremes of internal variability that are not present in the training
data.

We describe the data, architecture and baseline models in Section 2. We then de-
scribe the performance of CERA in Section 3 with an additional emphasis on precipi-
tation which is important for climate impacts. Finally we discuss our results and their
implications in Section 4.

2 Methods
2.1 Input—Output Specification and Experimental Setup

We use the same high-resolution model output and coarse-graining procedure as
in Yuval et al. (2021) supplemented by a warmer simulation from O’Gorman et al. (2021)
to test generalization across climates. Both simulations were performed using the Sys-
tem for Atmospheric Modeling (SAM, version 6.3) (Khairoutdinov & Randall, 2003) in
a quasi-global aquaplanet setup on an equatorial beta-plane with 48 vertical levels and
a zonally symmetric SST distribution. A hypohydrostatic rescaling factor of 4 was used
to enable convection-resolving simulations at 12 km horizontal resolution. The high-resolution
simulation output was coarse-grained by a factor of 8 (to 96 km) using spatial averag-
ing. For a range of thermodynamic and moisture variables, subgrid fluxes were calcu-
lated by differencing coarse-grained and resolved fluxes, and coarse-grained tendencies
were calculated by coarse-graining sources/sinks. The control simulation (0K) has base-
line SSTs while the +4K warmer simulation has SSTs uniformly increased by 4K. These
are the same SAM simulations as used in Beucler et al. (2024) but in that study they
were referred to as -4K and 0K. Each simulation is run for 600 days, with the final 500
days used for training and evaluation. The data from this period are randomly split into
95% for training and 5% for testing.

The inputs to the moist physics parameterization consist of vertical profiles of tem-
perature T and total non-precipitating water mixing ratio gy, evaluated at the lowest
30 full model levels. This yields a total of 30 x2 = 60 input features. The outputs in-
clude five vertically resolved quantities: the subgrid contribution to the flux of non-precipitating
liquid/ice static energy Hj, due to vertical advection (Hj, _,qv) and the total tendency
of Hy, from freezing and melting of precipitation (H _phase); the subgrid contribution to
the flux of gr due to vertical advection (¢r_adv) and cloud ice sedimentation (¢r_sed), and
the total tendency of gr due to microphysical conversions between g and precipitating
water (gr_mic). These outputs are defined on different vertical grids: vertical advective
fluxes are predicted at 29 “half” model levels above the surface, ice sedimentation fluxes
at 30 “half” model levels, and total tendencies at 30 “full” model levels. This results in
a total of 29 x 2 4+ 30 x 3 = 148 output features.

For full details of the simulation setup, coarse-graining methodology, and the en-
ergy and moisture variables used we refer the reader to Yuval et al. (2021). One devi-
ation from that setup is that we omit radiative heating from the parameterization, as
it is not clear a priori if it should have the same climate invariant inputs as the moist
physics processes that are our main focus. Consequently, we exclude from the inputs the
absolute meridional distance from the equator, which was previously used as a proxy for
insolation, and we omit radiative heating from the outputs. Another difference is that
our machine learning model uses input data that are normalized per column, whereas
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Yuval et al. (2021) apply normalization per vertical level. Output variables are normal-
ized per column, but for simplicity we do not apply the output reweighting for differ-
ent types of physical variables used by Yuval et al. (2021).

However, we did include radiative heating in an alternative version of our analy-
sis (results shown in Figure 3) which was designed to be directly comparable to Beucler
et al. (2024). The inputs in this case include the absolute meridional distance from the
equator, |y|, which serves as a proxy for insolation. The five vertically resolved outputs
listed earlier plus radiative heating are combined into the subgrid tendencies of Hj; and
gr using equations S2 and S5 of Yuval et al. (2021). The model was retrained to directly
predict these two combined tendencies.

We compare all our results with the climate invariant method as introduced in Beucler

et al. (2024), in which the inputs are transformed to a plume buoyancy variable (B) and
relative humidity (RH). These transformations were designed to improve the general-
ization of learned parameterizations across different climate states.

2.2 Model Architecture, Training, and Evaluation

We propose CERA (Climate-invariant Encoding through Representation Alignment),
a self-supervised model that learns climate-invariant structure directly from raw inputs,
without any feature engineering or labels from warmer climates. As illustrated in Fig-
ure 1, the model consists of two components: an autoencoder (AE) that processes multi-
level input features (i.e., vertical profiles), and a multilayer perceptron (MLP) that pre-
dicts target outputs from the learned latent representations.

The AE operates on a 60-dimensional input vector comprising vertical profiles of

temperature and total non-precipitating water. The encoder uses a stack of one-dimensional

convolutional layers. Each convolution has a kernel size of one and 64 channels, except
for the final encoder layer, which outputs a three channel latent tensor Z € RB*3xL
where B is the batch size and L is the number of vertical levels, which is 30 in our case.
A kernel size of one means that each vertical level is transformed independently of its
neighbors. This preserves vertical locality and can be viewed as applying the same dense
transformation at each vertical level. Vertically non-local operations (e.g., larger kernels
or attention across levels) could be explored in future work to capture vertical coupling.
The decoder mirrors the encoder with transposed 1D convolutions, known as deconvo-
lutions (see Zeiler et al. (2010)) to reconstruct the original input from the full latent code
Z, enabling self-supervised learning via reconstruction loss.

To recognize that not all input information can be made exactly climate invariant
while still reconstructing the inputs in different climates in the decoder, the latent space
is partitioned. One channel of Z at each vertical level is reserved for such non-aligned
information for the AE and does not participate in either the distribution alignment or
the downstream predictor. This partitioning is found to slightly improve the generaliza-
tion for the outputs related to ice (Hp _phase and g7 sed)-

The MLP predictor takes only the aligned subset of Z as input and maps it to a
148-dimensional output vector representing vertically resolved subgrid fluxes and ten-
dencies. The MLP predictor is a five-layer fully connected neural network with 128 neu-
rons per hidden layer and leaky ReLU activations.

We adapted the model for the alternative version of our analysis (results shown in
Figure 3) to ensure a direct comparison with Beucler et al. (2024), accounting for dif-
ferences in input and output variables described in the previous section. Since the dis-
tance to the equator |y| is assumed to affect only the radiative heating component, we
process |y| through a fully-connected two-layer MLP with 8 neurons in the hidden layer
and 30 neurons in the output layer, and add its output as a residual correction exclu-
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Figure 1. Schematic of CERA. The top half illustrates the autoencoder stage, where in-
puts from control (Xcoia) and warm (Xwarm) climates are encoded into latent representations
(Zcola and Zwarm) using shared 1D convolution layers. Reconstruction losses MSE(X, X ) are
applied to both climates, while an Earth Mover’s Distance loss EMD(Zco1d, Zwarm) €ncourages
alignment between their latent spaces. The bottom half depicts the predictor stage, where the la-
tent representation from the control climate is reshaped and passed through a predictor network
to estimate target outputs Y, with an MSE(Y, Y) loss applied for supervision. The framework
enables learning a climate-invariant latent space, supporting generalization to warmer climate

conditions.

sively to the energy tendency. This design choice minimizes the influence of |y| on the
rest of the network.

The AE is trained using input data from both the control and +4 K warmer cli-
mate states, while the MLP is trained using only control-climate outputs as supervision.
To enforce a shared latent structure across climate regimes, we introduced a loss term
based on the Earth Mover’s Distance (EMD) (Rubner et al., 2000) between the latent
distributions of control and +4K climate inputs. In one dimension, the EMD simplifies
to the distance between sorted samples, allowing for an efficient closed-form computa-
tion (Levina & Bickel, 2001). In our implementation, the EMD is computed separately
for each latent channel at each vertical level and then averaged across all dimensions.
This alignment mechanism forces the encoder to extract features that are common across
both climates, effectively learning a climate-invariant representation space.

The model is trained end-to-end using a combined loss that includes reconstruc-
tion loss for the autoencoder, EMD loss to encourage latent alignment between climates,
and prediction (pred) loss between predicted and true subgrid fluxes and tendencies in
the control climate. The total training loss is defined as:

Etotal = (1 - )\pred - )\EMD) . ACreconstruction + )\pred . Epred + )\EMD . EMD(Z07 Z+4K>7 (1)

where:

e Lrieconstruction 18 the mean squared error between inputs and their reconstructions
for both control and +4 K climates,
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« EMD(Zy, Z14x) is the Earth Mover’s Distance between latent spaces from the two
climate states,

* Lpred is the supervised loss (mean squared error) between predicted and ground-
truth subgrid fluxes and tendencies, using control-climate labels, and

* AEMD, Apred are tunable weights balancing the three objectives.

Further training details are provided in the Supplementary Materials.

We compare CERA against three alternative models: (i) a baseline multilayer per-
ceptron (MLP) trained on raw input profiles from the control climate (Baseline) (Yuval
et al., 2021); (ii) a physically informed MLP trained on hand-crafted, climate-invariant
features of relative humidity and plume buoyancy, following Beucler et al. (2024) (RH+B
baseline); and (iii) an ablation variant of CERA trained without the EMD alignment loss
(CERA-noAlign). To assess robustuness, all models were trained using five independent
random seeds (Haynes et al., 2023).

3 Results

3.1 Autoencoding and Latent Alignment Enable Climate-Invariant Rep-
resentations

We evaluate the predictive performance of four models on five key subgrid tendency
outputs (Figure 2). Averaging R? over all output variables, CERA achieves the high-
est overall accuracy, with a mean R? of 0.75 in the control climate and 0.53 in the +4 K
climate. This indicates both strong in-distribution performance and substantial gener-
alization capacity under warming.

In comparison, the Baseline model performs similarly to the RH+B baseline in the
control climate (both have R? = 0.72) and slightly worse than CERA (R? = 0.75).
That CERA outperforms the Baseline model in the control climate suggests that the re-
striction to using climate invariant inputs actually helps generalization beyond the train-
ing data even for test data in the control climate. The performance of the Baseline model
deteriorates sharply under warming, with the mean R? falling to 0.26, highlighting a lack
of ability to extrapolate beyond its training distribution as might be expected given dis-
tribution shifts in the input variables. The RH+B baseline maintains its performance
to a much greater extent in the warm climate (R? = 0.46), outperforming the Base-
line model but performing slightly worse than CERA (R? = 0.53).

These results underscore the effectiveness of the proposed latent-alignment strat-
egy in enabling generalization across climates. Ablation experiments further emphasize
its importance. The autoencoder-only variant (CERA-noAlign) improves upon the raw
Baseline across all random seeds, indicating that learning a latent representation of the
inputs helps the model extract more informative features for downstream prediction, even
without the alignment. However, the addition of the EMD loss proves critical for achiev-
ing consistently high performance.

In addition to improving mean accuracy, CERA also enhances robustness across
random seeds relative to the raw Baseline. The variance in R? among trained models
is notably reduced for CERA compared to the Baseline and CERA-noAlign in the +4 K
climate. However, the RH+B baseline demonstrates the highest robustness overall. These
results suggest that CERA may converge to different climate-invariant solutions across
random seeds, leading to variability in performance. In contrast, the RH+B baseline rep-
resents a deterministic, hand-crafted solution that yields more consistent results across
trained models. There may exist alternative hand-crafted input formulations capable of
achieving higher accuracy. Identifying such configurations, however, would require ex-
tensive manual tuning and domain expertise, suggesting that self-supervised learning ap-
proaches like CERA may offer a more scalable alternative.
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Figure 2. R? Comparison Across Models for Outputs in Control and +4K Cli-
mates. Blue dots indicate the coefficient of determination (R?) for each method (Baseline,
RH+B baseline, CERA, and CERA-noAlign) in the control climate, evaluated across five subgrid
variables. Red triangles show the corresponding R? scores under the +4 K warming scenario.
Results are displayed over five individual random seeds used in training per method. CERA
achieves the highest overall performance, especially under warming, while RH+B exhibits greater
robustness. CERA-noAlign improves upon the raw baseline but not to the same extent as CERA
and with increased variability across random seeds, underscoring the importance of latent align-

ment. Note the different vertical axes for the different panels.
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Figure 3. Same as Figure 2, but making a direct comparison to Beucler et al. (2024) by re-
training to include radiative heating in the parameterization and assessing skill for the tendencies

of non-precipitating liquid/ice static energy Hy and total non-precipitating water gr.

To further assess performance, we make a direct comparison to Beucler et al. (2024)
by retraining to include radiative heating and assessing skill for the total subgrid liquid/ice
static energy (H) and moistening (¢r) tendencies. As shown in Figure 3, CERA achieves
the highest R? scores in the control climate, outperforming both the raw-input Baseline
and the RH+B baseline. In the +4 K climate, CERA and RH+B produce comparable
performance, both substantially outperforming the Baseline model. These results show
that CERA is robust to changes in the outputs, and that again CERA not only gener-
alizes effectively to a warmer climate, but it maintains high predictive skill in the train-
ing climate.

3.2 Evaluation of Performance for Precipitation

Given the importance of precipitation for climate-change impacts, we next eval-
uate how well the ML models capture precipitation-related processes. In particular, we
analyze the vertical profile of prediction skill for g7 _mic, the tendency of g7 due to mi-
crophysical conversion to precipitation, and the resulting offline surface precipitation dis-
tributions. Details for computing the instantaneous surface precipitation rate can be found
in the Supplementary Materials. All results were averaged across five random seeds per
model.

Figure 4 shows R? for ¢ mic versus pressure and latitude in the control and +4 K
climates. In the control climate, all three models have a similar skill structure with moderate-
to-high skill in the mid-to-upper troposphere. In the +4 K climate, performance dispar-
ities between methods becomes pronounced. The Baseline model suffers a substantial
drop in predictive skill, with negative R? values in the tropics where it fails to extrap-
olate beyond its training climate. The RH+B baseline does not degrade to the same ex-
tent, but its skill is still substantially lower than in the control climate. In contrast, CERA
maintains strong performance in the mid and upper troposphere but shows reduced skill
in the boundary layer, particularly in the tropics.

Figure 5 shows the normalized frequency distributions of instantaneous precipita-
tion rates under control and +4 K warming scenarios. Precipitation rates are binned us-
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Figure 4. R? for gr_mic versus latitude and pressure across methods and climates.
Shown are the coefficient of determination (R?) values for predicted gr_mic (moisture tendency
due to microphysical conversion to precipitating water) in the control (top) and +4 K (bottom)
climates, averaged over five random seeds. Each row compares three models: Baseline, RH+B
baseline, and CERA. Regions with variance less than 1% of the mean variance across levels and
latitudes were masked to remove near-constant areas. In the control climate, all models exhibit
moderate-to-high skill. Under warming, performance differences become more pronounced. The
Baseline model degrades sharply in the tropics, the loss in skill is much less in RH+B, while
CERA retains high skill aloft though with some loss of skill in the boundary layer.
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ing 100 logarithmically spaced intervals starting at 1 mm day~!. Frequencies are normal-
ized by the number of samples exceeding this threshold, such that the sum across all bins
equals one, yielding a unitless vertical axis. These distributions provide a sensitive di-
agnostic of each model’s ability to reproduce the full range of precipitation intensities,
from drizzle to extremes.

In the control climate (Figure 5a), all models exhibit similar performance and closely
follow the reference distribution from the high-resolution simulation across most of the
range. However, two systematic discrepancies are apparent. First, all models overesti-
mate the frequency of light precipitation events in the 1-2mm day ! range. Second, all
models slightly underestimate the frequency of extreme events above ~ 100 mm day—!.

Despite these deviations, the overall agreement with the reference remains strong.

Under +4 K warming (Figure 5b), more pronounced differences emerge. The Base-
line model exhibits substantial overestimation across a wide range of intensities. Its bias
for weak intensities becomes more pronounced, with an overestimation of precipitation
below 4 mmday~!, and it substantially overestimates the frequency of extreme events
above 200mm day~'. In contrast, the RH+B baseline systematically underestimates the
frequency of precipitation across almost all intensities. CERA more accurately repro-
duces the high-resolution reference, particularly at the extreme tail (above 300 mm day '),
where it tracks the enhanced frequency of intense events associated with warming. How-

ever, it tends to underestimate the frequency of precipitation in the range of 40-300 mm day~".

Further insight into model performance is provided by considering the precipita-
tion distributions versus latitude shown in Figure 6. In the control climate (Figure 6a,c),
all models reproduce the general meridional structures of the mean and extreme (99.9th
percentile) precipitation. There are minor deviations in the extremes, with all models
slightly underestimating the peak intensity.

In the +4 K climate (Figure 6b,d), model differences become pronounced in the trop-
ics. CERA successfully captures both the intensification and the meridional structure
of tropical precipitation, even if it exhibits a slight underestimation of both mean and
extreme precipitation near the peak. In contrast, the Baseline model substantially over-
estimates the magnitude of tropical precipitation, particularly for extreme precipitation,
while the RH+B baseline systematically underestimates both mean and extreme values
across the tropics.

Together, these results demonstrate that CERA generalizes robustly across climates,
effectively capturing the vertical and zonal structure of moist processes, although its per-
formance degrades in the tropical boundary layer. The Baseline model shows a sharp
decline in skill for +4K, particularly in the deep tropics, while the RH+B baseline has

1

much less of a decline in skill for ¢ ;. but consistently underestimates precipitation through-

out the tropics.

4 Discussion

CERA demonstrates that combining autoencoding with latent space alignment of-
fers a powerful and flexible approach for learning climate-invariant representations of sub-
grid processes. Unlike models that rely on hand-crafted input features, CERA learns di-
rectly from raw inputs, eliminating the need for manual feature engineering. This ap-
proach reduces development effort and avoids restrictive assumptions that could limit
model skill or generalizability. Notably, CERA does not degrade performance in the con-
trol climate and in some cases even improves it, suggesting that latent alignment can en-
hance generalization without sacrificing in-distribution accuracy. A key future direction
is to implement and evaluate CERA in online simulations. While this study focuses on
moist-physics parameterization, the framework is broadly applicable and could be ex-
tended to other parameterized processes, or even to applications beyond parameteriza-
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Figure 5. Frequency distributions of instantaneous precipitation rates in the con-
trol and +4K climates. Panel (a) shows distributions in the control climate, while panel

(b) shows distributions under +4 K warming. Solid lines show model predictions averaged

across five random seeds: purple for the Baseline, orange for RH+B, and green for CERA. The
high-resolution reference simulation is shown in dashed black. Precipitation rates are derived
from offline-integrated gr_mic and binned using 100 logarithmically spaced intervals starting at
1mmday~". All models are compared against the high-resolution simulation reference (ground
truth). In the control climate, models generally reproduce the overall distribution shape but tend
to overestimate drizzle (1-2 mm dayfl) and slightly underestimate extremes. Under warming,
model performances diverge more substantially. The Baseline model overestimates across a broad
range, RH+B underestimates throughout, and CERA closely tracks the reference in the tail but

underpredicts the 40-300 mm day ' range.
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Figure 6. Mean and extreme precipitation versus latitude in control and +4K
climates. Panels (a) and (b) show the mean precipitation for the control and +4 K climates,
respectively, while panels (c) and (d) display the corresponding 99.9th percentile (extreme)
precipitation. All values are derived from offline-integrated gr_mic. Solid lines represent model
predictions averaged over five random seeds (purple for Baseline, orange for RH+B, green for
CERA), and the dashed black line shows the high-resolution reference simulation. Extreme pre-

cipitation curves have been lightly smoothed using a 1-2-1 filter for readability.

tion. For example, CERA’s climate-invariant properties may benefit statistical down-
scaling tasks that demand robust extrapolation across climate regimes.

Nevertheless, the framework has limitations. While the latent alignment strategy
enhances robustness, not all physical processes can be cast into climate-invariant forms.
This imposes inherent limits on the generalizability of this approach. Future work could
address these challenges by incorporating additional physical constraints or adapting the
framework to account for climate-dependent processes.

Additionally, the autoencoder in our framework employs one-dimensional convo-
lutional layers with a kernel size of one, resulting in vertically local transformations that
act independently at each level. While this design preserves interpretability, it precludes
modeling vertical interactions. Future work could explore vertically non-local architec-
tures to capture cross-level dependencies. Moreover, further analysis of the learned la-
tent representations, such as applying symbolic regression, may also help uncover inter-
pretable, low-dimensional expressions of key physical relationships.

Open Research Section
To support transparency and reproducibility, the data and code are being prepared

for public release and will be uploaded to GitHub and Zenodo.
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