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Abstract12

Robust generalization under climate change remains a major challenge for machine learn-13

ing applications in climate science. Most existing approaches struggle to extrapolate be-14

yond the climate they were trained on, leading to a strong dependence on training data15

from model simulations of warm climates. Use of climate-invariant inputs improves gen-16

eralization but requires challenging manual feature engineering. Here, we present CERA17

(Climate-invariant Encoding through Representation Alignment), a machine learning frame-18

work consisting of an autoencoder with explicit latent-space alignment, followed by a pre-19

dictor for downstream process estimation. We test CERA on the problem of parame-20

terizing moist-physics processes. Without training on labeled data from a +4K climate,21

CERA leverages labeled control-climate data and unlabeled warmer-climate inputs to22

improve generalization to the warmer climate, outperforming both raw-input and phys-23

ically informed baselines in predicting key moisture and energy tendencies. It captures24

not only the vertical and meridional structures of the moisture tendencies, but also shifts25

in the intensity distribution of precipitation including extremes. Ablation experiments26

show that latent alignment improves both accuracy and the robustness across random27

seeds used in training. While some reduced skill remains in the boundary layer, the frame-28

work offers a data-driven alternative to manual feature engineering of climate invariant29

inputs. Beyond parameterizations used in hybrid ML-physics systems, the approach holds30

promise for other climate applications such as statistical downscaling.31

Plain Language Summary32

Predicting how the atmosphere will behave in a warmer world is one of the biggest33

challenges in climate science. While machine learning has shown promise in improving34

weather and climate models, most approaches struggle to work reliably outside the cli-35

mate conditions they were trained on. In this study, we introduce CERA (Climate-invariant36

Encoding through Representation Alignment), a machine learning method designed to37

improve performance under climate change. CERA first learns a shared internal repre-38

sentation of the atmosphere using data from both present-day (control) and warmer (+4 ◦C)39

climates, without training on any outputs from the warmer climate. A second stage of40

the model then learns to predict key atmospheric processes using only outputs from the41

control climate. CERA makes more accurate predictions under warming than models42

that rely on raw inputs or manually engineered physical features. CERA offers a flex-43

ible, data-driven alternative to previous approaches to climate-change generalization. We44

apply CERA to moist physics processes in the atmosphere (including deep convection),45

but it holds potential for broader uses in climate science such as for estimating higher-46

resolution climate fields from coarse model output.47

1 Introduction48

Machine learning (ML) has emerged as a powerful tool for advancing weather and49

climate science (Chantry et al., 2021; Eyring et al., 2024; Schneider et al., 2022; Nguyen50

et al., 2023; Bracco et al., 2025). It has been applied across a wide range of tasks, such51

as weather forcasting (Weyn et al., 2021; Bi et al., 2022; Kurth et al., 2023; Lam et al.,52

2023; McNally et al., 2024; Kochkov et al., 2024; Price et al., 2025), parameterization53

of subgrid processes (O’Gorman & Dwyer, 2018; Gentine et al., 2018; Brenowitz & Brether-54

ton, 2018; Yuval & O’Gorman, 2020), emulation of global climate models (Cachay et al.,55

2024; Chapman et al., 2025; Watt-Meyer et al., 2025), bias-correction of weather and cli-56

mate models (Watt-Meyer et al., 2021; Bretherton et al., 2022; Bora et al., 2023; Gre-57

gory et al., 2025; Chapman & Berner, 2025) and statistical downscaling (Rampal et al.,58

2022; Hobeichi et al., 2023; Flora & Potvin, 2025). In particular, ML-based parameter-59

izations have shown promise in representing the effects of complex subgrid processes such60

as moist convection and boundary-layer turbulence by training on high-resolution model61
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data (Brenowitz & Bretherton, 2018; Yuval & O’Gorman, 2020; Han et al., 2023) or ob-62

servations (Zhao et al., 2019; McCandless et al., 2022).63

Despite this promise, a persistent challenge for ML models in climate applications64

is their limited generalization to out-of-distribution conditions. This problem is especially65

acute under climate change, where shifts in temperature, moisture, and circulation pat-66

terns can push the system into regimes not well represented in the training data. For in-67

stance, ML parameterizations trained on present-day conditions often perform poorly68

when evaluated in warmer climates, leading to inaccurate predictions of precipitation and69

subgrid tendencies (O’Gorman & Dwyer, 2018; Rasp et al., 2018; Scher & Messori, 2019).70

This generalization gap limits the reliability and robustness of ML-based tools in climate71

change scenarios, precisely where improved predictions are most needed.72

Several approaches have been proposed to improve performance in different climates.73

The most straightforward approach is to train ML models on high-resolution model out-74

put across multiple climates, so that the learned representation is implicitly exposed to75

climatic variability (O’Gorman & Dwyer, 2018; Rasp et al., 2018; Clark et al., 2022; Sun76

et al., 2024; Bodnar et al., 2025), although this implies a strong reliance on the quality77

of the high-resolution model output in different climates which is difficult to validate us-78

ing observations. Also there is a need to ensure the training data covers a sufficiently79

wide range of climates for the application at hand. Another strategy is to incorporate80

physics-based constraints, such as conservation of energy and moisture, non-negativity81

of precipitation, or constraints based on known thermodynamic relationships which may82

improve generalization (Brenowitz et al., 2020; Kashinath et al., 2021; Yuval et al., 2021;83

Perezhogin et al., 2025). In addition, Beucler et al. (2024) proposed a climate-invariant84

feature engineering framework, in which input variables are transformed (e.g., from spe-85

cific humidity and temperature to relative humidity and plume buoyancy) to reduce their86

distribution shift under climate forcing. While such physically motivated transformations87

have shown promise, they rely on hand-crafted features derived from expert knowledge.88

These transformations often require time-consuming trial-and-error tuning and may not89

yield optimal solutions, as they could sacrifice important information in pursuit of ap-90

proximate climate invariance. Moreover, some approaches assume access to labeled out-91

puts from future climates, which may not be available in practice, especially when us-92

ing real-world observations.93

In this study, we introduce a third path: learning climate-invariant structure di-94

rectly from data, without relying on expert-designed features or supervision from warmer-95

climate labels. Our model consists of an autoencoder (AE) and a multilayer perceptron96

(MLP) trained jointly in an end-to-end fashion. The AE learns a latent representation97

of the input profiles, while the MLP predicts subgrid thermodynamic tendencies from98

this latent code. Inputs from both present-day and +4K warmer climates are used to99

train the AE, but the MLP is supervised only using control-climate outputs. To ensure100

that the latent space remains aligned across climates, we introduce a distributional reg-101

ularization term based on the Earth Mover’s Distance (EMD) (Rubner et al., 2000), which102

penalizes divergence between the latent encodings of control and +4K inputs.103

The results show that our method achieves comparable or better performance than104

approaches based on hand-crafted physical inputs, without requiring any outputs from105

warmer climate conditions. We do still need inputs from the warmer climate, and in prac-106

tice these could be obtained from climate-model simulations or potentially a pseudo-global107

warming approach applied to observations (Schär et al., 1996). By not requiring outputs,108

and in particular the relationship between inputs and outputs, in the warmer climate,109

we are reducing dependence on high-resolution model output in a warmer climate. This110

highlights the potential of our method as a data-driven strategy for improving general-111

ization in climate ML.112
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We test our approach on the problem of parameterization of subgrid moist processes113

in the atmosphere using the neural-network parameterization of Yuval et al. (2021). We114

consider a +4K warming as a stringent test of generalization, but we emphasize that a115

useful application in practice could be for a much smaller magnitude of warming. For116

example, one could train on recent decades and potentially use climate-invariance to im-117

prove generalization for a modest warming over the subsequent few decades or to im-118

prove robustness to extremes of internal variability that are not present in the training119

data.120

We describe the data, architecture and baseline models in Section 2. We then de-121

scribe the performance of CERA in Section 3 with an additional emphasis on precipi-122

tation which is important for climate impacts. Finally we discuss our results and their123

implications in Section 4.124

2 Methods125

2.1 Input–Output Specification and Experimental Setup126

We use the same high-resolution model output and coarse-graining procedure as127

in Yuval et al. (2021) supplemented by a warmer simulation from O’Gorman et al. (2021)128

to test generalization across climates. Both simulations were performed using the Sys-129

tem for Atmospheric Modeling (SAM, version 6.3) (Khairoutdinov & Randall, 2003) in130

a quasi-global aquaplanet setup on an equatorial beta-plane with 48 vertical levels and131

a zonally symmetric SST distribution. A hypohydrostatic rescaling factor of 4 was used132

to enable convection-resolving simulations at 12 km horizontal resolution. The high-resolution133

simulation output was coarse-grained by a factor of 8 (to 96 km) using spatial averag-134

ing. For a range of thermodynamic and moisture variables, subgrid fluxes were calcu-135

lated by differencing coarse-grained and resolved fluxes, and coarse-grained tendencies136

were calculated by coarse-graining sources/sinks. The control simulation (0K) has base-137

line SSTs while the +4K warmer simulation has SSTs uniformly increased by 4K. These138

are the same SAM simulations as used in Beucler et al. (2024) but in that study they139

were referred to as -4K and 0K. Each simulation is run for 600 days, with the final 500140

days used for training and evaluation. The data from this period are randomly split into141

95% for training and 5% for testing.142

The inputs to the moist physics parameterization consist of vertical profiles of tem-143

perature T and total non-precipitating water mixing ratio qT , evaluated at the lowest144

30 full model levels. This yields a total of 30×2 = 60 input features. The outputs in-145

clude five vertically resolved quantities: the subgrid contribution to the flux of non-precipitating146

liquid/ice static energy HL due to vertical advection (HL adv) and the total tendency147

of HL from freezing and melting of precipitation (HL phase); the subgrid contribution to148

the flux of qT due to vertical advection (qT adv) and cloud ice sedimentation (qT sed), and149

the total tendency of qT due to microphysical conversions between qT and precipitating150

water (qT mic). These outputs are defined on different vertical grids: vertical advective151

fluxes are predicted at 29 “half” model levels above the surface, ice sedimentation fluxes152

at 30 “half” model levels, and total tendencies at 30 “full” model levels. This results in153

a total of 29× 2 + 30× 3 = 148 output features.154

For full details of the simulation setup, coarse-graining methodology, and the en-155

ergy and moisture variables used we refer the reader to Yuval et al. (2021). One devi-156

ation from that setup is that we omit radiative heating from the parameterization, as157

it is not clear a priori if it should have the same climate invariant inputs as the moist158

physics processes that are our main focus. Consequently, we exclude from the inputs the159

absolute meridional distance from the equator, which was previously used as a proxy for160

insolation, and we omit radiative heating from the outputs. Another difference is that161

our machine learning model uses input data that are normalized per column, whereas162
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Yuval et al. (2021) apply normalization per vertical level. Output variables are normal-163

ized per column, but for simplicity we do not apply the output reweighting for differ-164

ent types of physical variables used by Yuval et al. (2021).165

However, we did include radiative heating in an alternative version of our analy-166

sis (results shown in Figure 3) which was designed to be directly comparable to Beucler167

et al. (2024). The inputs in this case include the absolute meridional distance from the168

equator, |y|, which serves as a proxy for insolation. The five vertically resolved outputs169

listed earlier plus radiative heating are combined into the subgrid tendencies of HL and170

qT using equations S2 and S5 of Yuval et al. (2021). The model was retrained to directly171

predict these two combined tendencies.172

We compare all our results with the climate invariant method as introduced in Beucler173

et al. (2024), in which the inputs are transformed to a plume buoyancy variable (B) and174

relative humidity (RH). These transformations were designed to improve the general-175

ization of learned parameterizations across different climate states.176

2.2 Model Architecture, Training, and Evaluation177

We propose CERA (Climate-invariant Encoding through Representation Alignment),178

a self-supervised model that learns climate-invariant structure directly from raw inputs,179

without any feature engineering or labels from warmer climates. As illustrated in Fig-180

ure 1, the model consists of two components: an autoencoder (AE) that processes multi-181

level input features (i.e., vertical profiles), and a multilayer perceptron (MLP) that pre-182

dicts target outputs from the learned latent representations.183

The AE operates on a 60-dimensional input vector comprising vertical profiles of184

temperature and total non-precipitating water. The encoder uses a stack of one-dimensional185

convolutional layers. Each convolution has a kernel size of one and 64 channels, except186

for the final encoder layer, which outputs a three channel latent tensor Z ∈ RB×3×L,187

where B is the batch size and L is the number of vertical levels, which is 30 in our case.188

A kernel size of one means that each vertical level is transformed independently of its189

neighbors. This preserves vertical locality and can be viewed as applying the same dense190

transformation at each vertical level. Vertically non-local operations (e.g., larger kernels191

or attention across levels) could be explored in future work to capture vertical coupling.192

The decoder mirrors the encoder with transposed 1D convolutions, known as deconvo-193

lutions (see Zeiler et al. (2010)) to reconstruct the original input from the full latent code194

Z, enabling self-supervised learning via reconstruction loss.195

To recognize that not all input information can be made exactly climate invariant196

while still reconstructing the inputs in different climates in the decoder, the latent space197

is partitioned. One channel of Z at each vertical level is reserved for such non-aligned198

information for the AE and does not participate in either the distribution alignment or199

the downstream predictor. This partitioning is found to slightly improve the generaliza-200

tion for the outputs related to ice (HL phase and qT sed).201

The MLP predictor takes only the aligned subset of Z as input and maps it to a202

148-dimensional output vector representing vertically resolved subgrid fluxes and ten-203

dencies. The MLP predictor is a five-layer fully connected neural network with 128 neu-204

rons per hidden layer and leaky ReLU activations.205

We adapted the model for the alternative version of our analysis (results shown in206

Figure 3) to ensure a direct comparison with Beucler et al. (2024), accounting for dif-207

ferences in input and output variables described in the previous section. Since the dis-208

tance to the equator |y| is assumed to affect only the radiative heating component, we209

process |y| through a fully-connected two-layer MLP with 8 neurons in the hidden layer210

and 30 neurons in the output layer, and add its output as a residual correction exclu-211
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Figure 1. Schematic of CERA. The top half illustrates the autoencoder stage, where in-

puts from control (Xcold) and warm (Xwarm) climates are encoded into latent representations

(Zcold and Zwarm) using shared 1D convolution layers. Reconstruction losses MSE(X, X̂) are

applied to both climates, while an Earth Mover’s Distance loss EMD(Zcold, Zwarm) encourages

alignment between their latent spaces. The bottom half depicts the predictor stage, where the la-

tent representation from the control climate is reshaped and passed through a predictor network

to estimate target outputs Ŷ , with an MSE(Y, Ŷ ) loss applied for supervision. The framework

enables learning a climate-invariant latent space, supporting generalization to warmer climate

conditions.

sively to the energy tendency. This design choice minimizes the influence of |y| on the212

rest of the network.213

The AE is trained using input data from both the control and +4K warmer cli-214

mate states, while the MLP is trained using only control-climate outputs as supervision.215

To enforce a shared latent structure across climate regimes, we introduced a loss term216

based on the Earth Mover’s Distance (EMD) (Rubner et al., 2000) between the latent217

distributions of control and +4K climate inputs. In one dimension, the EMD simplifies218

to the distance between sorted samples, allowing for an efficient closed-form computa-219

tion (Levina & Bickel, 2001). In our implementation, the EMD is computed separately220

for each latent channel at each vertical level and then averaged across all dimensions.221

This alignment mechanism forces the encoder to extract features that are common across222

both climates, effectively learning a climate-invariant representation space.223

The model is trained end-to-end using a combined loss that includes reconstruc-
tion loss for the autoencoder, EMD loss to encourage latent alignment between climates,
and prediction (pred) loss between predicted and true subgrid fluxes and tendencies in
the control climate. The total training loss is defined as:

Ltotal = (1− λpred − λEMD) · Lreconstruction + λpred · Lpred + λEMD · EMD(Z0, Z+4K), (1)

where:224

• Lreconstruction is the mean squared error between inputs and their reconstructions225

for both control and +4K climates,226

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems

• EMD(Z0, Z+4K) is the Earth Mover’s Distance between latent spaces from the two227

climate states,228

• Lpred is the supervised loss (mean squared error) between predicted and ground-229

truth subgrid fluxes and tendencies, using control-climate labels, and230

• λEMD, λpred are tunable weights balancing the three objectives.231

Further training details are provided in the Supplementary Materials.232

We compare CERA against three alternative models: (i) a baseline multilayer per-233

ceptron (MLP) trained on raw input profiles from the control climate (Baseline) (Yuval234

et al., 2021); (ii) a physically informed MLP trained on hand-crafted, climate-invariant235

features of relative humidity and plume buoyancy, following Beucler et al. (2024) (RH+B236

baseline); and (iii) an ablation variant of CERA trained without the EMD alignment loss237

(CERA-noAlign). To assess robustness, all models were trained using five independent238

random seeds (Haynes et al., 2023).239

3 Results240

3.1 Autoencoding and Latent Alignment Enable Climate-Invariant Rep-241

resentations242

We evaluate the predictive performance of four models on five key subgrid tendency243

outputs (Figure 2). Averaging R2 over all output variables, CERA achieves the high-244

est overall accuracy, with a mean R2 of 0.75 in the control climate and 0.53 in the +4K245

climate. This indicates both strong in-distribution performance and substantial gener-246

alization capacity under warming.247

In comparison, the Baseline model performs similarly to the RH+B baseline in the248

control climate (both have R2 = 0.72) and slightly worse than CERA (R2 = 0.75).249

That CERA outperforms the Baseline model in the control climate suggests that the re-250

striction to using climate invariant inputs actually helps generalization beyond the train-251

ing data even for test data in the control climate. The performance of the Baseline model252

deteriorates sharply under warming, with the mean R2 falling to 0.26, highlighting a lack253

of ability to extrapolate beyond its training distribution as might be expected given dis-254

tribution shifts in the input variables. The RH+B baseline maintains its performance255

to a much greater extent in the warm climate (R2 = 0.46), outperforming the Base-256

line model but performing slightly worse than CERA (R2 = 0.53).257

These results underscore the effectiveness of the proposed latent-alignment strat-258

egy in enabling generalization across climates. Ablation experiments further emphasize259

its importance. The autoencoder-only variant (CERA-noAlign) improves upon the raw260

Baseline across all random seeds, indicating that learning a latent representation of the261

inputs helps the model extract more informative features for downstream prediction, even262

without the alignment. However, the addition of the EMD loss proves critical for achiev-263

ing consistently high performance.264

In addition to improving mean accuracy, CERA also enhances robustness across265

random seeds relative to the raw Baseline. The variance in R2 among trained models266

is notably reduced for CERA compared to the Baseline and CERA-noAlign in the +4K267

climate. However, the RH+B baseline demonstrates the highest robustness overall. These268

results suggest that CERA may converge to different climate-invariant solutions across269

random seeds, leading to variability in performance. In contrast, the RH+B baseline rep-270

resents a deterministic, hand-crafted solution that yields more consistent results across271

trained models. There may exist alternative hand-crafted input formulations capable of272

achieving higher accuracy. Identifying such configurations, however, would require ex-273

tensive manual tuning and domain expertise, suggesting that self-supervised learning ap-274

proaches like CERA may offer a more scalable alternative.275
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Figure 2. R2 Comparison Across Models for Outputs in Control and +4K Cli-

mates. Blue dots indicate the coefficient of determination (R2) for each method (Baseline,

RH+B baseline, CERA, and CERA-noAlign) in the control climate, evaluated across five subgrid

variables. Red triangles show the corresponding R2 scores under the +4K warming scenario.

Results are displayed over five individual random seeds used in training per method. CERA

achieves the highest overall performance, especially under warming, while RH+B exhibits greater

robustness. CERA-noAlign improves upon the raw baseline but not to the same extent as CERA

and with increased variability across random seeds, underscoring the importance of latent align-

ment. Note the different vertical axes for the different panels.
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Figure 3. Same as Figure 2, but making a direct comparison to Beucler et al. (2024) by re-

training to include radiative heating in the parameterization and assessing skill for the tendencies

of non-precipitating liquid/ice static energy HL and total non-precipitating water qT .

To further assess performance, we make a direct comparison to Beucler et al. (2024)276

by retraining to include radiative heating and assessing skill for the total subgrid liquid/ice277

static energy (HL) and moistening (qT ) tendencies. As shown in Figure 3, CERA achieves278

the highest R2 scores in the control climate, outperforming both the raw-input Baseline279

and the RH+B baseline. In the +4K climate, CERA and RH+B produce comparable280

performance, both substantially outperforming the Baseline model. These results show281

that CERA is robust to changes in the outputs, and that again CERA not only gener-282

alizes effectively to a warmer climate, but it maintains high predictive skill in the train-283

ing climate.284

3.2 Evaluation of Performance for Precipitation285

Given the importance of precipitation for climate-change impacts, we next eval-286

uate how well the ML models capture precipitation-related processes. In particular, we287

analyze the vertical profile of prediction skill for qT mic, the tendency of qT due to mi-288

crophysical conversion to precipitation, and the resulting offline surface precipitation dis-289

tributions. Details for computing the instantaneous surface precipitation rate can be found290

in the Supplementary Materials. All results were averaged across five random seeds per291

model.292

Figure 4 shows R2 for qT mic versus pressure and latitude in the control and +4K293

climates. In the control climate, all three models have a similar skill structure with moderate-294

to-high skill in the mid-to-upper troposphere. In the +4K climate, performance dispar-295

ities between methods becomes pronounced. The Baseline model suffers a substantial296

drop in predictive skill, with negative R2 values in the tropics where it fails to extrap-297

olate beyond its training climate. The RH+B baseline does not degrade to the same ex-298

tent, but its skill is still substantially lower than in the control climate. In contrast, CERA299

maintains strong performance in the mid and upper troposphere but shows reduced skill300

in the boundary layer, particularly in the tropics.301

Figure 5 shows the normalized frequency distributions of instantaneous precipita-302

tion rates under control and +4K warming scenarios. Precipitation rates are binned us-303
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Control

+4K

Baseline RH+B baseline CERA

Figure 4. R2 for qT mic versus latitude and pressure across methods and climates.

Shown are the coefficient of determination (R2) values for predicted qT mic (moisture tendency

due to microphysical conversion to precipitating water) in the control (top) and +4K (bottom)

climates, averaged over five random seeds. Each row compares three models: Baseline, RH+B

baseline, and CERA. Regions with variance less than 1% of the mean variance across levels and

latitudes were masked to remove near-constant areas. In the control climate, all models exhibit

moderate-to-high skill. Under warming, performance differences become more pronounced. The

Baseline model degrades sharply in the tropics, the loss in skill is much less in RH+B, while

CERA retains high skill aloft though with some loss of skill in the boundary layer.
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ing 100 logarithmically spaced intervals starting at 1mmday−1. Frequencies are normal-304

ized by the number of samples exceeding this threshold, such that the sum across all bins305

equals one, yielding a unitless vertical axis. These distributions provide a sensitive di-306

agnostic of each model’s ability to reproduce the full range of precipitation intensities,307

from drizzle to extremes.308

In the control climate (Figure 5a), all models exhibit similar performance and closely309

follow the reference distribution from the high-resolution simulation across most of the310

range. However, two systematic discrepancies are apparent. First, all models overesti-311

mate the frequency of light precipitation events in the 1–2mmday−1 range. Second, all312

models slightly underestimate the frequency of extreme events above ∼ 100mmday−1.313

Despite these deviations, the overall agreement with the reference remains strong.314

Under +4K warming (Figure 5b), more pronounced differences emerge. The Base-315

line model exhibits substantial overestimation across a wide range of intensities. Its bias316

for weak intensities becomes more pronounced, with an overestimation of precipitation317

below 4mmday−1, and it substantially overestimates the frequency of extreme events318

above 200mmday−1. In contrast, the RH+B baseline systematically underestimates the319

frequency of precipitation across almost all intensities. CERA more accurately repro-320

duces the high-resolution reference, particularly at the extreme tail (above 300mmday−1),321

where it tracks the enhanced frequency of intense events associated with warming. How-322

ever, it tends to underestimate the frequency of precipitation in the range of 40–300mmday−1.323

Further insight into model performance is provided by considering the precipita-324

tion distributions versus latitude shown in Figure 6. In the control climate (Figure 6a,c),325

all models reproduce the general meridional structures of the mean and extreme (99.9th326

percentile) precipitation. There are minor deviations in the extremes, with all models327

slightly underestimating the peak intensity.328

In the +4K climate (Figure 6b,d), model differences become pronounced in the trop-329

ics. CERA successfully captures both the intensification and the meridional structure330

of tropical precipitation, even if it exhibits a slight underestimation of both mean and331

extreme precipitation near the peak. In contrast, the Baseline model substantially over-332

estimates the magnitude of tropical precipitation, particularly for extreme precipitation,333

while the RH+B baseline systematically underestimates both mean and extreme values334

across the tropics.335

Together, these results demonstrate that CERA generalizes robustly across climates,336

effectively capturing the vertical and zonal structure of moist processes, although its per-337

formance degrades in the tropical boundary layer. The Baseline model shows a sharp338

decline in skill for +4K, particularly in the deep tropics, while the RH+B baseline has339

much less of a decline in skill for qT mic but consistently underestimates precipitation through-340

out the tropics.341

4 Discussion342

CERA demonstrates that combining autoencoding with latent space alignment of-343

fers a powerful and flexible approach for learning climate-invariant representations of sub-344

grid processes. Unlike models that rely on hand-crafted input features, CERA learns di-345

rectly from raw inputs, eliminating the need for manual feature engineering. This ap-346

proach reduces development effort and avoids restrictive assumptions that could limit347

model skill or generalizability. Notably, CERA does not degrade performance in the con-348

trol climate and in some cases even improves it, suggesting that latent alignment can en-349

hance generalization without sacrificing in-distribution accuracy. A key future direction350

is to implement and evaluate CERA in online simulations. While this study focuses on351

moist-physics parameterization, the framework is broadly applicable and could be ex-352

tended to other parameterized processes, or even to applications beyond parameteriza-353
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Control(a) +4K(b) 

Figure 5. Frequency distributions of instantaneous precipitation rates in the con-

trol and +4K climates. Panel (a) shows distributions in the control climate, while panel

(b) shows distributions under +4K warming. Solid lines show model predictions averaged

across five random seeds: purple for the Baseline, orange for RH+B, and green for CERA. The

high-resolution reference simulation is shown in dashed black. Precipitation rates are derived

from offline-integrated qT mic and binned using 100 logarithmically spaced intervals starting at

1mmday−1. All models are compared against the high-resolution simulation reference (ground

truth). In the control climate, models generally reproduce the overall distribution shape but tend

to overestimate drizzle (1–2mmday−1) and slightly underestimate extremes. Under warming,

model performances diverge more substantially. The Baseline model overestimates across a broad

range, RH+B underestimates throughout, and CERA closely tracks the reference in the tail but

underpredicts the 40–300mmday−1 range.
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Figure 6. Mean and extreme precipitation versus latitude in control and +4K

climates. Panels (a) and (b) show the mean precipitation for the control and +4K climates,

respectively, while panels (c) and (d) display the corresponding 99.9th percentile (extreme)

precipitation. All values are derived from offline-integrated qT mic. Solid lines represent model

predictions averaged over five random seeds (purple for Baseline, orange for RH+B, green for

CERA), and the dashed black line shows the high-resolution reference simulation. Extreme pre-

cipitation curves have been lightly smoothed using a 1-2-1 filter for readability.

tion. For example, CERA’s climate-invariant properties may benefit statistical down-354

scaling tasks that demand robust extrapolation across climate regimes.355

Nevertheless, the framework has limitations. While the latent alignment strategy356

enhances robustness, not all physical processes can be cast into climate-invariant forms.357

This imposes inherent limits on the generalizability of this approach. Future work could358

address these challenges by incorporating additional physical constraints or adapting the359

framework to account for climate-dependent processes.360

Additionally, the autoencoder in our framework employs one-dimensional convo-361

lutional layers with a kernel size of one, resulting in vertically local transformations that362

act independently at each level. While this design preserves interpretability, it precludes363

modeling vertical interactions. Future work could explore vertically non-local architec-364

tures to capture cross-level dependencies. Moreover, further analysis of the learned la-365

tent representations, such as applying symbolic regression, may also help uncover inter-366

pretable, low-dimensional expressions of key physical relationships.367

Open Research Section368

To support transparency and reproducibility, the data and code are being prepared369

for public release and will be uploaded to GitHub and Zenodo.370
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