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Abstract
Tropical precipitation clusters exhibit power-law frequency distributions in area
and volume (integrated precipitation), implying a lack of characteristic scale in
tropical convective organization. However, it remains unknown what gives rise
to the power laws and how the power-law exponents for area and volume are
related to one another. Here, we explore the perspective that precipitation clus-
ters are islands above a convective threshold on a rough column-water-vapor
(CWV) topography. This perspective is supported by the agreement between the
precipitation clusters and CWV islands in their frequency distributions as well
as fractal dimensions. Power laws exist for CWV islands at different thresholds
through the CWV topography, suggesting that the existence of power laws is not
specifically related to local precipitation dynamics, but is rather a general feature
of CWV islands. Furthermore, the frequency distributions and fractal dimen-
sions of the clusters can be reproduced when the CWV field is modeled to be
self-affine with a roughness exponent of 0.3. Self-affine scaling theory relates the
statistics of precipitation clusters to the roughness exponent; it also relates the
power-law slopes for area and volume without involving the roughness expo-
nent. Thus, the perspective of precipitation clusters as CWV islands provides
a useful framework to consider many statistical properties of these precipita-
tion clusters, particularly given that CWV is well-observed over a wide range of
length-scales in the Tropics. However, the statistics of CWV islands at the con-
vective threshold imply a smaller roughness than is inferred from the power
spectrum of the bulk CWV field, and further work is needed to understand the
scaling of the CWV field.
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1 INTRODUCTION

Tropical convection and associated precipitation are orga-
nized in clusters of spatial scales from 10–1,000 km (e.g.,
Mapes and Houze, 1993; Quinn and Neelin, 2017a).
Understanding this organization is important because of

the societal impacts of the spatial patterns of tropical pre-
cipitation, the influence of convective organization on the
large-scale properties of the tropical atmosphere (Tobin
et al., 2012), and the need to represent organization in con-
vective parameterizations in global climate models (Mapes
and Neale, 2011). Furthermore, both mean and extreme
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tropical precipitation are expected to experience substan-
tial changes with global warming (O’Gorman, 2012; Duffy
et al., 2020), in which convective organization could play
an important role (Rossow et al., 2013; Tan et al., 2015).

Many studies have investigated the cause of the spatial
clumping of convection in the idealized setting of radiative
convective equilibrium (Bretherton et al., 2005; Muller and
Held, 2012; Craig and Mack, 2013; Emanuel et al., 2014;
Wing and Emanuel, 2014; Wing and Cronin, 2015). This
behavior is termed convective self-aggregation, and the
physical processes that lead to self-aggregation in radia-
tive convective equilibrium are also thought to be active
in the tropical atmosphere (Holloway et al., 2017; Beucler
et al., 2019). The paradigm of self-aggregation shows that
convection can organize even in the absence of surface
temperature gradients and background shear, but it does
not by itself explain the spatiotemporal characteristics of
convection and precipitation found in the Tropics.

In particular, numerous studies have found power-law
distributions of precipitation clusters in observations
(Lovejoy and Mandelbrot, 1985; Peters et al., 2010; 2012;
Quinn and Neelin, 2017a; Teo et al., 2017), general circula-
tion model (GCM) simulations (Quinn and Neelin, 2017b),
and high-resolution simulations with explicit convection
(O’Gorman et al., 2021). Power-law distributions feature a
probability density distribution of the form

Pr(x) ∝ x−𝜏 , (1)

where Pr(x) is the probability density of x. We refer to 𝜏

as the power-law exponent, and 𝜏 is positive in all cases
throughout this article. Equation 1 is linear in log–log
space, and it is the only scale-invariant distribution in the
sense that the distribution does not have a characteristic
length-scale (Turcotte, 1992).

The presence of power-law distributions in temporally
and spatially connected precipitation clusters across sev-
eral orders of magnitude has been of significant recent
interest (e.g., Neelin et al., 2008; Hottovy and Stechmann,
2015; Teo et al., 2017; Quinn and Neelin, 2017a; 2017b;
Ahmed and Neelin, 2019). One reason for such interest
is that power-law distributions imply that precipitation
is scale-free over a wide range of spatiotemporal scales,
which provides a strong constraint on the underlying
dynamics of precipitation, as not all physical systems are
scale-free. The exponents of the power-law distributions
(𝜏) can be linked to different types of idealized frameworks
(universality classes). The dynamics of these idealized
frameworks in turn can provide insights back into the real
system, which, in our case, is tropical precipitation. In par-
ticular, many studies have hypothesized that atmospheric
precipitation is an instance of self-organized criticality
(SOC: Peters and Neelin, 2006; Neelin et al., 2008; Teo et al.,

2017; Haerter, 2019) because of the presence of power laws
and the analogy of precipitation events to avalanches in
SOC sandpile models (Bak et al., 1987; Pruessner, 2012).
However, it remains unclear whether common SOC mod-
els (e.g., Pruessner, 2012, p. 82) can explain the observed
power-law exponents of precipitation clusters. Advances
are thus needed in the fundamental understanding of
the power-law distributions of precipitation and how they
relate to other aspects of convective organization, partic-
ularly given changes in precipitation cluster distributions
with global warming (Quinn and Neelin, 2017b).

In this article, we focus on spatial precipitation clusters
that are defined as groups of precipitating grid points con-
nected in the horizontal. Cluster area is defined as the hor-
izontal area of the cluster, and cluster volume is defined as
the spatially integrated precipitation rate over the cluster
following Quinn and Neelin (2017a), although they con-
verted volume to an equivalent “power” associated with
latent heating. Frequency distributions of precipitation
clusters exhibit power laws with exponents in the range
of 2.0–1.7 for area (Lovejoy and Mandelbrot, 1985; Peters
et al., 2009; 2012; Quinn and Neelin, 2017a; Teo et al.,
2017) and 1.7–1.5 for volume (Quinn and Neelin, 2017a;
Teo et al., 2017). The spatial clustering of precipitation has
been simulated by stochastic reaction–diffusion equations
(Hottovy and Stechmann, 2015; Ahmed and Neelin, 2019).
In particular, the stochastic model of Ahmed and Neelin
(2019) includes representations of precipitation and lateral
moisture transport, and it produces frequency-distribution
exponents of 1.6 for area and 1.5 for volume, which are
close to the observed exponents. To explain the exponents,
Ahmed and Neelin (2019) used a stochastic branching
process which gives the same exponent of 1.5 for both
area and volume, although a direct connection between
the branching process and precipitation processes was not
provided.

From a different perspective, Pelletier (1997) proposed
that the frequency distribution of tropical cumulus cloud
area could be understood through the statistical properties
of the convective boundary layer (CBL) height, assum-
ing that the CBL is a self-affine surface and that cloud
forms wherever the CBL height exceeds a certain thresh-
old. Self-affine surfaces are a special class of fractals where
the system is self-similar with respect to rescaling by dif-
ferent ratios in different spatial directions, as opposed to
fractals in the traditional sense where the system remains
self-similar under the same rescaling ratio in all directions
(section 3.3 in Barabási and Stanley, 1995). The self-affine
scaling theory of Kondev and Henley (1995) was then used
to relate the area-distribution of clouds to the roughness
of the CBL height field. Pelletier (1997) further hypothe-
sized that the roughness exponent of the CBL height field
has a value of 0.4 because of Kardar–Parisi–Zhang (KPZ)
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dynamics (Kardar et al., 1986). This roughness could also
be connected to the fractal dimension of clouds, which
was previously found to be 1.35 (Lovejoy, 1982), although
clouds have slightly different dimension for length-scales
below 1 km (Benner and Curry, 1998). The same frac-
tal dimension of cumulus clouds has alternatively been
related to three-dimensional turbulence (Siebesma and
Jonker, 2000) and gradient percolation theory (Peters et al.,
2009).

Here, we take a somewhat similar approach to Pelletier
(1997) in that we seek to understand clusters based on a
threshold through a rough surface. However, we consider
precipitation clusters rather than cumulus clouds, and we
relate the clusters to the field of column-integrated water
vapor (CWV) rather than CBL height. CWV has units of
mm and represents the height of liquid water if all water
vapor in the column is condensed onto the surface. Using
CWV has the advantage that it is readily observed over a
wide range of length-scales. Furthermore, precipitation
undergoes a rapid pickup once the column-integrated
water vapor (CWV) exceeds a critical value, as seen in
observations (Peters and Neelin, 2006; Neelin et al., 2009;
Raymond et al., 2009; Ahmed and Schumacher, 2015) and
simulations (Bretherton et al., 2005; Sahany et al., 2012;
Posselt et al., 2012; Yano et al., 2012). This property also
has been used in the stochastic models of Hottovy and
Stechmann (2015) and Ahmed and Neelin (2019). The
sharp pickup occurs because of the conditional insta-
bility of moist convection, as moist convection tends to

occur with abundant low-level moisture through moist
air parcels rising from near the surface and abundant
mid-level moisture due to the effects of entrainment (Hol-
loway and Neelin, 2009; Muller et al., 2009). We expect
the critical CWV to have weak variations in the horizontal
due to the weak horizontal temperature gradients in the
tropical free troposphere.

We regard precipitation clusters as manifestations of
CWV islands above a fixed threshold on a rough CWV
topography (Figure 1). The fixed threshold is the convec-
tive threshold of CWV above which precipitation increases
rapidly. The power-law frequency distribution of precip-
itation cluster area is then akin to Korčak’s law, which
describes a power-law distribution of island area above sea
level on Earth’s relief (Mandelbrot, 1982; Imre, 2015). We
further assume that precipitation is linear in the excess of
CWV above the threshold, such that the volume of a pre-
cipitation cluster corresponds to the volume of the CWV
island above the threshold. Consistent with prior stud-
ies which show that power-law distributions for islands
on a rough topography are a generic result (e.g., Olami
and Zeitak, 1996), we find that the existence of power-law
CWV island distributions is not dependent on the choice
of threshold and is not expected to be tied to the specific
dynamics in precipitating regions.

From a combination of observations and simulations,
we show that tropical precipitation clusters are closely
connected to CWV islands in area and volume frequency
distributions and also in fractal dimensions. The fractal

F I G U R E 1 Examples of precipitation clusters as islands on a rough CWV topography using (a, c) observations and (b, d) a
high-resolution simulation. The observations are taken from TRMM-3B42 for precipitation and ERA5 reanalysis for CWV. In (a, b), shading
shows 3-hourly averaged CWV, and the black contours highlight CWV island perimeters cut by convective CWV thresholds of (a) 62 mm and
(b) 51 mm. In (c, d), the contours show accumulated precipitation in the same 3-hour period, with the contours corresponding to
precipitation rates of 10, 50, and 90 mm⋅day−1 from light to dark, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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nature of the cluster objects is reflected in their power-law
distributions and in the straightness of various scaling
relations, such as the area–perimeter relationship. We
further generate idealized self-affine surfaces and show
that the thresholded islands on these surfaces correspond
well with the statistics of CWV islands. Assuming that the
CWV field is self-affine allows us to apply the self-affine
scaling theories for contour loops of Kondev and Henley
(1995) and Kondev et al. (2000) to predict the exponents
of cluster area and volume distributions. We produce
theoretical predictions relating these exponents and the
cluster fractal dimensions to the roughness exponent of
the CWV field and to each other. While the self-affine
scaling theory is a useful framework, its quantitative pre-
dictions are not very accurate in some cases because the
CWV is not exactly self-affine, and because the scaling
theory is derived for all contour loops at all thresholds,
not for contour loops at a single threshold.

This article is organized as follows. We describe the
frequency distributions of precipitation clusters and their
fractal dimensions in observations and simulations in
Section 2. We then demonstrate the similarity between
the statistics of precipitation clusters and thresholded
CWV islands in Section 3. We further make the ideal-
ization that CWV is self-affine and apply the self-affine
scaling theory to give expressions for the power-law
distribution exponents and fractal dimensions of CWV
islands in Section 4. Lastly, we give our conclusions in
Section 5.

2 DISTRIBUTIONS
AND DIMENSIONS
OF PRECIPITATION CLUSTERS
IN DIFFERENT DATASETS

We analyze precipitation and CWV statistics in obser-
vations, a high-resolution simulation with explicit
convection (hereafter hi-res), and a GCM simulation.
For observations, we use precipitation from TRMM-3B42
(Huffman et al., 2007) and CWV from the ERA5 reanal-
ysis (Hersbach et al., 2020), both of which are on a 0.25◦
by 0.25◦ grid. We refer to ERA5 CWV as observations for
simplicity even though it is from a reanalysis dataset. For
the hi-res simulation, we use the system for atmospheric
modeling (SAM: Khairoutdinov and Randall, 2003),
configured as a semiglobal aquaplanet on an extended
equatorial beta plane with a hemispherically and zon-
ally symmetric sea-surface temperature distribution. The
domain spans from 78◦S–78◦N in latitude and 62◦ in
longitude at the Equator. The horizontal grid spacing is
12 km, and hypo-hydrostatic rescaling (Kuang et al., 2005;
Garner et al., 2007; Fedorov et al., 2018) is applied to

reduce the horizontal scale difference between convection
and large-scale dynamics. See Yuval and O’Gorman (2020)
and O’Gorman et al. (2021) for more details of hi-res. For
the GCM simulation, ensemble number 1 in the Com-
munity Earth System Model (CESM) large ensemble
dataset (Kay et al., 2015) is used as a representative cou-
pled atmosphere–ocean GCM simulation, which has a
grid spacing of 1.25◦ in longitude and 0.94◦ in latitude.
We select the largest overlap between observations and
GCM, from January 1, 2002 to December 31, 2005, to
minimize effects from climate change, and hi-res has a
simulation length of 1,200 days. The precipitation rate
and the CWV field are 3-hourly averaged for observations
and hi-res. For the GCM simulation, the precipitation
rate is 6-hourly averaged, and the CWV field is calculated
using a mass-integral of its 6-hourly instantaneous spe-
cific humidity output. All results presented are based on
a region of 15◦S–15◦N, 160◦–222◦E in the central tropical
Pacific for observations and GCM, and 15◦S–15◦N with all
available longitudes for hi-res.

We define precipitation clusters as groups of precipi-
tating grid points that are connected via nearest-neighbor
bonds, where there are four nearest neighbors to each grid
point. Precipitating grid points are grid points where the
precipitation rate exceeds 0.7 mm⋅hr−1. This precipitation
threshold is chosen to be consistent with prior works such
as Quinn and Neelin (2017a). Using a different threshold
between 0.1 and 2.5 mm⋅hr−1 does not change the shape of
the cluster distributions noticeably . Consistent with figure
2d in Otsuka et al. (2017), the cluster area distribution
becomes lognormal-like when a much higher threshold of
20 mm⋅hr−1 is used. This implies that the lognormal dis-
tribution of clouds found by some previous studies may be
due to the use of a relatively low brightness temperature as
a threshold (e.g., Mapes and Houze, 1993).

Following Equation 1, we denote the power-law expo-
nents for cluster area and volume distributions as 𝛼 and 𝛽,
respectively, where 𝛼 and 𝛽 are positive when the log–log
slope is negative. The meanings of all symbols used in the
article are summarized in the Appendix in Table A1. To
estimate 𝛼 and 𝛽, we sort cluster area and volume into
25 bins and apply linear regression in the log–log space.
The smallest and largest bins are determined by the min-
imum and maximum of the clusters. We use logarithmic
binning because it reduces noise in the tail of the distri-
bution (Bauke, 2007). The widths of the bins are rounded
to the nearest multiples of the smallest area or volume,
following Quinn and Neelin (2017a). Each distribution’s
regression range is chosen based on the apparent extent
of the power-law range. We report the error of each expo-
nent in parentheses after its estimated value. To obtain
the error, we allow the starting bin to move upward by
one bin, remain the same, or move downward by one bin,
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F I G U R E 2 The frequency distributions of (a) cluster area and (b) cluster volume. Different markers correspond to observed
precipitation (squares), hi-res precipitation (circles), hi-res CWV islands at 51 mm (triangles), and islands on the self-affine surfaces with H =
0.3 at a threshold of 51 mm (crosses). The distributions are normalized such that the integral is the average number of clusters per unit area
of the domain with units of km−2. The distributions are also shifted consecutively downwards by a factor of 50 starting from the observed
precipitation for clarity. In (b), the volumes of hi-res CWV islands and self-affine islands are converted to precipitation by Equation 4 to plot
island volume and precipitation volume on the same graph. The statistics are based on the region of 160◦–222◦E and 15◦S–15◦N for
observations, the same latitudinal band for hi-res, and the whole domain for self-affine. The solid lines are linear regressions in log–log space,
and their extents correspond to the regression ranges [Colour figure can be viewed at wileyonlinelibrary.com]

giving three choices of starting point. The same applies to
the end bin, and together these choices yield nine expo-
nent values. We regard the largest absolute deviation out
of the nine values from the estimated value as the mea-
surement error of each exponent. This error dominates
over the traditional standard error of the regression slope,
and we use it to represent the uncertainty in the measured
exponents. The regression ranges of cluster volume distri-
butions are approximately matched to those of the cluster
area distributions in the sense that they cover the same
fractional distance between the smallest and largest bins
of the distribution in log space.1

Consistent with previous studies, we find power-law
frequency distributions with exponential upper cutoffs
for precipitation cluster area and volume in observations
and hi-res (Figure 2). The cluster area exponent 𝛼 is 1.65
(0.04) for observations, with a similar value of 1.73 (0.05)
for hi-res. The parentheses after each exponent indicate
the regression error as described above. The values and
errors of all exponents for different datasets in this article
are summarized in Table 1. The cluster volume expo-
nent 𝛽 is lower at 1.54 (0.04) for observations, with a
similar value of 1.57 (0.04) for hi-res. These values for 𝛼

and 𝛽 are similar to values in previous studies that also
analyzed TRMM-3B42 (Quinn and Neelin, 2017a; Teo
et al., 2017). We regard the hi-res simulation as having an

1In practice, we use the same set of consecutive bins out of all 25 bins as
the regression range for cluster area and cluster power distributions.

idealized yet faithful representation of tropical precipita-
tion (O’Gorman et al., 2021), but the cluster distributions
for GCM are different, and they are discussed in Appendix
S1 in the Supporting Material.

We use the area–perimeter scaling to estimate the
fractal perimeter dimension of precipitation clusters
(Figure 3a). This self-similar scaling was first adopted to
study fractal cloud dimensions by Lovejoy (1982). For a
set of two-dimensional self-similar fractal objects, their
perimeter length is related to area by

l ∝ ADl∕2, (2)

where l is perimeter length, A is area, and Dl is the
perimeter dimension. The perimeters are traced out using
find_contours() in the scikit-image library, which imple-
ments a two-dimensional version of the marching cubes
algorithm (Lorensen and Cline, 1987). Dl is determined
by binning

√
A in the log space, taking the average of l in

each bin, and regressing the l averages against
√

A in the
log–log space. The regression ranges used are indicated by
the extents of the solid lines in Figure 3. The uncertainties
in the regression slopes are estimated in the same way as
for the frequency distributions by varying the start and
end point upwards or downwards by one bin and finding
the maximum deviation. The Dl of precipitation clusters is
1.37 (0.02) for observations and has a similar value of 1.41
(0.02) for hi-res. These values are also broadly consistent
with previous findings that the fractal dimension of

http://wileyonlinelibrary.com
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T A B L E 1 Precipitation cluster area (𝛼) and cluster volume (𝛽) exponents, distribution scaling relation (Equation 10), perimeter
dimension (Dl), volume dimension (DV ), and dimension scaling relation (Equation 13) for different datasets

Obs. precip. Hi-res precip. Hi-res CWV Self-affine, H = 0.3 Theory, H = 0.3

𝛼 1.65 (0.04) 1.73 (0.05) 1.77 (0.05) 1.78 (0.01) 1.85 (Equation 6)

𝛽 1.54 (0.04) 1.57 (0.04) 1.58 (0.04) 1.60 (0.03) 1.74 (Equation 9)

𝛼 + 2∕𝛽 2.95 (0.07) 3.00 (0.08) 3.04 (0.09) 3.03 (0.03) 3 (Equation 10)

Dl 1.37 (0.02) 1.41 (0.02) 1.35 (0.02) 1.39 (0.01) 1.35 (Equation 11)

DV 2.32 (0.02) 2.33 (0.04) 2.32 (0.03) 2.41 (0.01) 2.3 (Equation 12)

2Dl + DV 5.07 (0.06) 5.14 (0.08) 5.02 (0.07) 5.18 (0.02) 5 (Equation 13)

Note: The results for hi-res CWV and the self-affine surface are calculated for islands cut by a threshold at 51 mm, about 2.0𝜎 above the mean.

F I G U R E 3 (a) Perimeter, (b) volume, and (c) perimeter squared multiplied by volume as functions of the square root of area for
observed precipitation clusters (squares), hi-res precipitation clusters (circles), hi-res CWV islands at 51 mm (trangles), and islands on a
self-affine surface with H = 0.3 at 51 mm (crosses). Solid lines show linear regressions in log–log space with the estimated slopes in the
legends. In (b) and (c), the volumes of hi-res CWV islands and self-affine islands are converted to precipitation by Equation 4 [Colour figure
can be viewed at wileyonlinelibrary.com]

the cloud perimeter is 1.35 for radii from 1–1,000 km
(Lovejoy, 1982).

We also investigate the scaling of cluster volume with
area (Figure 3b). We introduce a volume fractal dimension,
DV , such that

V ∝ ADV∕2. (3)

The precipitation clusters in observations and hi-res
have similar DV values of 2.32 (0.02) and 2.33 (0.04),
respectively, with the dimensions and errors estimated
using the same approach as for Dl, 𝛼, and 𝛽.

3 PRECIPITATION
AND THRESHOLDED- CWV
CLUSTERS

To understand better the statistical properties of precipi-
tation clusters, we envision them as islands above a con-
vective threshold on a rough CWV topography. Denoting
CWV as Q, we define a CWV convective threshold, Qc,

which quantifies convective inhibition. We assume that
the precipitation rate is zero when CWV is below Qc, and
the precipitation rate scales linearly with the excess of
CWV when CWV is above Qc:

P(r) =

{
C(Q − Qc) when Q > Qc,

0 otherwise.
(4)

P(r) is the 3-hourly precipitation rate at location r, and
C is a proportionality factor. The value of C does not affect
the analytical results of the power-law exponents or frac-
tal dimensions in later sections. Equation 4 can be thought
of as a first-order parameterization that captures the onset
of precipitation once CWV exceeds a threshold. Figure 4
shows the mean precipitation rate conditioned on CWV, in
which CWV values are binned with constant intervals in
linear space, and the precipitation rate is averaged in each
bin. We find that Equation 4 works well for the hi-res simu-
lation, as shown in Figure 4, while noticing the fact that the
exact functional form relating precipitation to CWV differs
to some extent across different observational and modeling

http://wileyonlinelibrary.com
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F I G U R E 4 Tropical precipitation binned by CWV in the
hi-res simulation (solid) and the estimate of Equation 4 with C =
72.8 day−1 and Qc = 51 mm (dashed). Bins that have less than a
millionth of the total number of data instances are not shown
[Colour figure can be viewed at wileyonlinelibrary.com]

studies (Neelin et al., 2009; Posselt et al., 2012; Sahany et al.,
2012; Yano et al., 2012; Ahmed and Schumacher, 2015)

The convective threshold (Qc) cuts through the CWV
field and gives a collection of distinct islands above the
threshold (Figure 1a,b). With Equation 4, each CWV island
has an associated hypothetical precipitation cluster. We
define the volume of the CWV island as the volume of the
hypothetical precipitation cluster, which is the spatial inte-
gral of C(Q − Qc) within the island. The island’s projected
area is the area of the hypothetical precipitation cluster.

We choose a CWV threshold of 51 mm for hi-res
throughout the article because this is the integer thresh-
old that gives CWV islands with both 𝛼 and 𝛽 closest to
the precipitation clusters, as discussed below. This thresh-
old is also close to the value of 48 mm that gives the best
match for the mean area fraction of precipitation in the
hi-res simulation. We determine the proportionality fac-
tor, C, by regressing the linear part of Equation 4 against
the bin-averaged precipitation rates in Figure 4. For hi-res,
the CWV threshold of 51 mm gives C = 72.8 day−1, mean-
ing that 1 mm in CWV above the threshold corresponds
to 72.8 mm⋅day−1 in precipitation. A higher threshold of
62 mm is chosen for the case of observations, but it is
only used for illustration in Figure 1a. We don’t match the
distribution of CWV islands to the distribution of precipi-
tation clusters in observations, because the moisture field
from the ERA5 reanalysis is smooth at short length-scales,
which makes the correspondence between CWV islands
and precipitation clusters not as good as hi-res and the
CWV island distributions not power-law-like at high CWV
thresholds. The threshold for hi-res is lower than for obser-
vations, because the average sea-surface temperature in

hi-res is lower than that in observations in the selected
central tropical Pacific domain.

To support the notion that precipitation clusters are
manifestations of thresholded CWV islands, we first com-
pare the pattern of thresholded CWV islands directly
with that of precipitation clusters in observations and
hi-res in Figure 1. CWV islands in both observations and
hi-res have very similar shapes to precipitation clusters.
There is a dominant CWV island accompanied by multiple
smaller islands in observations (Figure 1a), whereas mul-
tiple medium-area islands prevail in hi-res (Figure 1b); the
same pattern also goes for precipitation clusters. This dif-
ference in CWV island (and precipitation cluster) configu-
ration is due to the tropical Pacific warm pool being located
on the western side in the domain of observations, while
the sea-surface temperature is zonally uniform for hi-res.

Hi-res CWV islands also have power-law distribu-
tions in area and volume, and the power-law exponents
are close to those of the precipitation clusters (Figure 2).
Due to computational constraints, we randomly sample
500 snapshots of the 3-hourly averaged CWV field of
hi-res to generate CWV island distributions. The hi-res
simulation is used instead of observations or GCM,
because hi-res has the highest resolution and does not
show evidence of smoothing in the CWV field at small
length-scales. We set the CWV island volumes that are
smaller than the minimum precipitation cluster vol-
ume, 2,419.2 km2 ⋅mm⋅day−1, to 2,419.2 km2 mm day−1.2
Otherwise, the plotting of CWV island distributions is
exactly the same as for precipitation clusters.

For the CWV threshold of 51 mm in hi-res, the fre-
quency distributions of area and volume of the CWV
islands are a good match to those of precipitation clus-
ters for the power-law ranges in Figure 2. The measured
power-law exponents are 𝛼 = 1.77 (0.05) and 𝛽 = 1.58 (0.04)
for the CWV islands, compared with 𝛼 = 1.73 (0.05) and
𝛽 = 1.57 (0.04) for the precipitation clusters. The areas
of the largest precipitation clusters and of CWV islands
at the convective threshold of 51 mm are similar at about
4×105 km2. The mean and standard deviation of the CWV
field are 35.3 mm and 8.0 mm, respectively, so that 51 mm
is roughly 2.0𝜎 above the mean value.

The fractal dimensions of the hi-res CWV islands at
51 mm are also in good agreement with those of the hi-res
precipitation clusters (Figure 3a,b). The Dl for CWV clus-
ters at a threshold of 51 mm is 1.35 (0.02), slightly lower
than the Dl of 1.41 (0.02) for hi-res precipitation clusters.
Similarly, the DV for CWV clusters at the 51 mm threshold

2The minimum volume, 2,419.2 km2 mm⋅day−1, is equal to having a
precipitation rate of 0.7 mm⋅hr−1 at a single grid point of size 144 km2,
and the 0.7 mm⋅hr−1 rate is the minimum precipitation rate used to
define precipitation clusters in Section 2.
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F I G U R E 5 Dotted lines with circles show the frequency distributions of (a) area and (b) volume of hi-res CWV islands at different
thresholds of 51, 45, 40, and 35 mm (from light to dark, top to bottom). Solid lines show linear regressions in log–log space, with the
corresponding exponents in the legends. The regression ranges are indicated by the horizontal extent of the solid lines. The distributions are
normalized like those in Figure 2 and, starting from 51 mm, are shifted consecutively downwards by two decades for clarity [Colour figure
can be viewed at wileyonlinelibrary.com]

is 2.32 (0.03), close to the DV of 2.33 (0.04) for precipitation
clusters.

Interestingly, power-law distributions of CWV island
area and volume exist for a wide range of CWV thresholds
(Figure 5). This is the case even for thresholds like 35 mm,
far below the convective threshold (51 mm), such that the
precipitation rate over most of the island coverage is close
to zero. The area and volume distributions for 35 mm have
a much larger maximum area and volume than the distri-
butions for 51 mm, because 35 mm cuts through a larger
portion of the CWV topography compared with 51 mm.
Indeed, the CWV island distribution at 35 mm has a local
maximum at very large area and volume, indicating the
presence of continents in the domain. Similarly to the case
of precipitation clusters (Figure 2), 𝛼 is larger than 𝛽 for
the distributions of CWV islands at different thresholds
(Figure 5). However, 𝛼 and 𝛽 are not constant for different
CWV thresholds. Rather, both exponents follow a similar
trend, where they decrease and then increase as the CWV
threshold is raised from near the mean level of 35 mm to
the convective threshold of 51 mm (Figures 5 and S3). The
reasons for this variation are discussed in Section 4.

That the frequency distributions for the area and vol-
ume of CWV islands at the convective CWV threshold
are very similar to those of precipitation clusters and that
their fractal dimensions are also in good agreement sug-
gest that tropical precipitation clusters are manifestations
of thresholded CWV islands and are in turn related to
the CWV field. This allows us to use the geometric prop-
erties of the CWV field to understand the existence of
power laws and the relationships between 𝛼, 𝛽, Dl, and
DV . The fact that power-law frequency distributions exist

for CWV islands at different thresholds also implies that
the existence of power laws does not depend on local
precipitation dynamics such as cold pools, but is more
related to the scale-free nature of CWV dynamics, which
occurs in both precipitating and nonprecipitating regions
in the Tropics. On the other hand, precipitation dynam-
ics may affect the roughness of the CWV field and thus
influence the power-law exponents of the frequency distri-
butions and fractal dimensions. In the next section, we use
a self-affine scaling theory to obtain analytical expressions
that help explain the power-law exponents and fractal
dimensions.

4 APPLYING SELF-AFFINE
SCALING THEORY TO THE CWV
TOPOGRAPHY

We seek theories that can predict the CWV island fre-
quency distributions and fractal dimensions from the
statistical properties of the CWV field, which in turn give
predictions for the corresponding properties of precipita-
tion clusters. We observe that the perimeter and volume
of CWV islands in hi-res exhibit scaling relationships
with area (Figure 3a,b), and that the power spectrum
of CWV approximately follows a power law over a wide
range of wavenumbers (Figure S2). These properties sug-
gest that CWV may be modeled as a self-affine surface
(e.g., Mandelbrot, 1985; Barabási and Stanley, 1995). An
isotropic self-affine surface, h(r), satisfies

h(r) ∼ b−Hh(br), (5)
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F I G U R E 6 Snapshots (shading) and the corresponding level sets (thin contours) of the anomalies of (a) hi-res CWV and (b) an
idealized self-affine surface with H = 0.3. The thick black contour corresponds to the clusters cut by the convective threshold, Qc = 51 mm.
The spatial mean in each panel is removed for a better comparison [Colour figure can be viewed at wileyonlinelibrary.com]

where h(r) is surface height at location r, b is a rescal-
ing factor, H is the roughness exponent, and ∼ means
statistical equivalence. Equation 5 states that the statis-
tical properties of a subset of the surface (left side of the
equation assuming b > 1) is the same as that of the surface
itself (right side), subject to a rescaling of b−H in height.
Typically, H takes values between 0 and 1. H characterizes
the difference in rescaling between horizontal directions
(r) and the vertical direction (h). Surfaces with H = 1 are
self-similar in all spatial directions. For a fixed vertical
width (standard deviation) at the largest horizontal scale
of the system, the surface has fewer small-scale variations
for larger H (Krim and Indekeu, 1993).

4.1 Idealized self-affine surfaces

We first generate idealized self-affine surfaces to assess
whether the islands on these surfaces correspond well to
the CWV islands. The self-affine surfaces are generated
in a square domain with 512 points in each direction. A
grid spacing of 13.5 km is chosen such that the side of
the square domain has the same extent as the hi-res sim-
ulation in the zonal direction. The mean and standard
deviation are chosen to match those of the hi-res CWV
field. The self-affine surfaces are statistically isotropic with
a power-law power spectrum S(k) ∝ k−𝜇, where k is the
wavenumber and 𝜇 = 2H + 1 (equation 7.48 in Turcotte,
1992). We generate 500 surfaces, and, for each surface, the
phases of its Fourier components are randomly sampled
in [0, 2𝜋) with a uniform distribution. The resulting sur-
faces also belong to Gaussian random surfaces, because the
height field has a Gaussian distribution.

We test a range of H values and find that H = 0.3 gives
the best overall agreement with the hi-res CWV field in

terms of island frequency distributions and island fractal
dimensions at the convective threshold of 51 mm, or 2.0𝜎
above the mean. Interestingly, H = 0.3 is close to the
surface growth model of KPZ (Kardar et al., 1986), which
measures H ≃ 0.39 in numerical simulations3 and was
used to relate cumulus cloud distribution to convective
boundary-layer height (Pelletier, 1997). Figure 6b shows
an example of the generated self-affine surface. In each
of the self-affine surfaces, there is typically a dominant
cluster somewhere in the domain (not shown in Figure 6)
that is much larger than the largest cluster in the hi-res
CWV field. The difference in the largest cluster size is due
to the power spectrum of the hi-res CWV field not being
a power law at low wavenumbers (Figure S2). The area
and volume frequency distributions of self-affine islands
at the 51-mm threshold follow power laws (Figure 2). The
exponents are 𝛼 = 1.78 (0.01) and 𝛽 = 1.60 (0.03), respec-
tively, which are close to the exponents of the 51-mm
CWV islands: 𝛼 = 1.77 (0.05) and 𝛽 = 1.58 (0.04). The
perimeter dimension also agrees well with Dl = 1.39
(0.01) for self-affine islands and Dl = 1.35 (0.02) for the
51-mm CWV islands, whereas the agreement in volume
dimension is not quite as good with DV = 2.41 (0.01) for
self-affine islands and DV = 2.32 (0.03) for the CWV islands
(Figure 3a,b).

However, we also see deviations of the CWV field from
self-affine scaling. In particular, the power spectrum of
CWV in hi-res has 𝜇 = 2.51 (0.39) as shown in Figure
S2, which would imply a larger value of H ≈ 0.75 com-
pared with the roughness of H = 0.3 of self-affine surfaces
that gives the best match for the CWV islands at 51 mm.

3There has not been an exact calculation of H for KPZ in two
dimensions. Numerical simulations in two dimensions seem to
converge to H ≃ 0.39 (Pagnani and Parisi, 2015).
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The difference in power spectrum manifests in the dif-
ferences in spatial patterns between hi-res CWV and the
self-affine surface with H = 0.3. Because the total variance
is the same, hi-res CWV has less small-scale variability
than the self-affine surface, due to the steeper slope in
the hi-res CWV power spectrum (compare Figures 6a and
b). Similarly, we find that 𝛼 and 𝛽 vary differently as the
threshold changes for hi-res CWV compared with the
self-affine surface (Figure S3a). Thus, we speculate that
precipitation dynamics may be decreasing H for high val-
ues of the CWV threshold, compared with the appropriate
H for the bulk CWV field measured from the power spec-
trum. A scaling form more general than self-affine scaling
may be needed to capture all the statistical properties of
the turbulent CWV field.

Although the CWV field is not exactly self-affine,
islands on a self-affine surface at H = 0.3 do pro-
vide a good match to the CWV islands in hi-res at
51 mm for all of the statistical properties we investi-
gate in this study. Thus, in the next section, we connect
analytical results based on self-affine scaling theory
to the measured frequency distributions and fractal
dimensions.

4.2 Theoretical predictions
of frequency distributions

Suppose that a series of evenly spaced thresholds cuts
through a self-affine topography and generates an ensem-
ble of contour loops and encircled islands at different
levels (Figure 6b). The frequency distribution of the loop
length in the contour ensemble is a power law, the
slope of which is related to the roughness exponent, H
(Kondev and Henley, 1995). Pelletier (1997) then showed
that the frequency distribution of area within the con-
tour loops also follows a power law as Pr(A) ∝ A−𝛼 ,
where Pr denotes frequency distribution, A denotes loop
area, and

𝛼 = 2 − H
2
. (6)

Equation 6 shows a reverse dependence of 𝛼 on H, con-
sistent with figure 14 in Wood and Field (2011), which is
based on a one-dimensional bounded cascade model for
clouds. Equation 6 has been confirmed numerically by
Rajabpour and Vaez Allaei (2009). It’s important to note
that these power-law distributions of contour length and
area apply to contours at all levels rather than at one par-
ticular threshold, and they also include the contours and
areas of lakes within islands. For contours and islands at
single levels near the mean level, Equation 6 still holds
(Rajabpour and Vaez Allaei, 2009), but when the level is

raised far above the mean, Equation 6 overestimates 𝛼

(Olami and Zeitak, 1996)4.
From Equation 6, we derive a formula for the fre-

quency distribution of island volume. The volume of an
island scales as V ∝ Ah, where A is the area and h is the
peak height of the island above the threshold. We assume
that the area of lakes within the island is small compared
with its total area, so that A ∝ R2, where R is the radius
that can be thought of as the edge of the smallest square
that covers the island. Define vertical width, W(R), as the
root-mean-square fluctuation of the surface height where
the mean is taken over R. For a self-affine surface, it follows
that W2(R) ∝ R2H . We further assume that the peak height
of each island is proportional to the vertical width of the
surface within the island’s area coverage: h ∝ W(R) ∝ RH ,
such that the volume scales as

V ∝ ARH ∝ R2+H . (7)

Let Pr(V) be the frequency distribution of island
volume, and assume that it has a power-law form
Pr(V) ∝ V−𝛽 . Substituting Pr(A) ∝ A−𝛼 and Equation 7
into Pr(A) dA = Pr(V) dV yields

𝛽 = 2𝛼 + H
2 + H

. (8)

Substituting for 𝛼 using Equation 6 gives

𝛽 = 4
2 + H

. (9)

Therefore, the distributions of island area and volume
both follow power laws for a self-affine topography, and
the exponents of the power laws are determined, accord-
ing to Equations 6 and 9, by the roughness exponent (H)
of the topography. Similarly to 𝛼, larger values of H lead to
smaller values of 𝛽, suggesting that both 𝛼 and 𝛽 should fol-
low similar trends when H is varied. Since Equation 6 over-
estimates 𝛼 for a single threshold far above the mean, we
expect Equation 9 would also overestimate 𝛽 in that case,
since we have used Equation 6 in our derivation above.

The numerically generated self-affine surfaces in
Section 4.1 suggest that self-affine surfaces with H = 0.3
are an appropriate match to the CWV field for islands
at the 51-mm convective threshold. For this H value,
Equations 6 and 9 predict that 𝛼 = 1.85 and 𝛽 ≈ 1.74,

4Olami and Zeitak (1996) neglected contours and areas associated with
lakes within islands, whereas Rajabpour and Vaez Allaei (2009)
considered all contours, including contours within an island. We find
that considering lakes inside islands reduces the bias in Equation 6 at
thresholds close to the mean (0–1𝜎), but does not diminish the overall
decreasing trend in 𝛼 at high thresholds.



LI et al. 413

compared with 𝛼 = 1.78 (0.01) and 𝛽 = 1.60 (0.03) mea-
sured from the generated self-affine surfaces at 51 mm
(2.0𝜎 above the mean). Thus, the theory correctly predicts
that 𝛼 is larger than 𝛽, but it overpredicts both values
when applied to a single threshold high above the mean,
consistent with previous work on 𝛼 at different single
thresholds (Olami and Zeitak, 1996).5

The theoretical predictions for 𝛼 and 𝛽 are related to
each other via a scaling relation upon eliminating H from
Equations 6 and 9:

𝛼 + 2
𝛽
= 3. (10)

This relation allows the prediction of 𝛽 given 𝛼 and vice
versa, without knowing the value of H. Furthermore, for
all 𝛼 values between 1 and 2, 𝛽 is always smaller than 𝛼

by Equation 10, which explains why 𝛽 is generally found
to be smaller than 𝛼 for precipitation clusters in prior
works. Despite the inaccuracies in the individual estimates
of 𝛼 and 𝛽, Equation 10 holds well for observations and
hi-res precipitation clusters (Table 1) and also for hi-res
CWV islands and self-affine islands under a wide range of
thresholds (Figure S3b).6

4.3 Theoretical predictions of fractal
dimensions

For self-affine surfaces, the scaling theory (Kondev and
Henley, 1995) also predicts the fractal dimension of con-
tour loops,

Dl =
3 − H

2
, (11)

which was derived by Kondev et al. (2000) (partly based
on a conjecture) and confirmed numerically by Nezhad-
haghighi and Rajabpour (2011). Note that this dimension
is the fractal dimension of a single contour loop, not the
fractal dimension of all contours at the same level (D =
2 − H as in Mandelbrot, 1975). For the volume fractal
dimension, comparing its definition in Equation 3 and the
volume scaling in Equation 7 gives that

DV = 2 + H. (12)

5The numerically generated self-affine surfaces give 𝛼 = 1.84 for all
contours at the mean threshold including lakes within islands (Figure
S5), and this value is in better agreement with the theoretical prediction
of 𝛼 = 1.85. We do not report 𝛽 here because the volume is not
well-defined for lakes within islands.
6Although we do not focus on GCM in the main text, it is interesting to
note that Equation 10 holds with 𝛼 + 2∕𝛽 = 2.96 (0.14) for the very
different values of 𝛼 and 𝛽 that occur for GCM compared with hi-res and
observations (𝛼 = 1.10, 𝛽 = 1.07, as shown in Figure S1).

For H = 0.3, these theoretical predictions give Dl = 1.35
and DV=2.3. These values are in good agreement with the
results for the self-affine surface with H = 0.3, which have
Dl = 1.39 (0.01) and DV = 2.41 (0.01), and hi-res CWV
islands at the threshold of 51 mm, which have Dl = 1.35
(0.02) and DV = 2.32 (0.03), shown in Figure 3. Unlike for
𝛼 and 𝛽, Dl and DV for the islands on self-affine surfaces
do not vary strongly as the threshold is varied, but there
is some evidence for systematic variations in hi-res CWV
island dimensions (Figures 7 and S4a).

Similarly to the spirit of Equation 10, we can eliminate
H by combining Equations 11 and 12 and obtain

2Dl + DV = 5. (13)

Equation 13 holds approximately for the precipitation
clusters in observations and hi-res (Table 1 and Figure 3c).
Note that Table 1 shows 2Dl + DV based on individual Dl
and DV from different datasets, whereas Figure 3c shows
the scaling exponent measured from regressing l2V against
R in log–log space. Equation 13 also holds approximately
for the self-affine surface and CWV islands at 51 mm
(Table 1) and also for a wide range of thresholds (Figures 7c
and S4b). The agreement of Equation 13 with the regres-
sion slopes and the accuracy of the scaling of l2V ∼ R2Dl+DV

with R5 suggest that, despite the systematic variations in
Dl and DV (Figure 7a,b), Equation 13 holds well for the
combination of the two fractal dimensions.

Overall, the predictions based on the self-affine scaling
theory provide considerable insight into how the rough-
ness of the CWV field controls the statistical properties
of CWV islands, even though there are some inaccuracies
related to the intrinsic limitations in the theory (overesti-
mation of 𝛼 and 𝛽 for thresholds high above the mean) and
the deviation of the CWV field from self-affine scaling.

5 CONCLUSIONS
AND DISCUSSION

We have shown from observations and a high-resolution
simulation with explicit convection that tropical precip-
itation clusters can be seen as islands on a rough CWV
topography cut by a convective threshold, analogous to the
actual islands above sea level on Earth’s relief. The phys-
ical basis for this link between precipitation clusters and
CWV islands is the onset of precipitation at a critical CWV
level, which has been widely found in observations and
simulations of the tropical atmosphere. Using the hi-res
simulation as an idealized representation of the tropical
atmosphere, we find that the CWV islands at a convective
threshold match precipitation clusters in the power-law
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F I G U R E 7 Same as in Figure 3 but for hi-res CWV islands at thresholds of 51, 45, 40, and 35 mm (from light to dark, top to bottom).
Starting from 51 mm, the scalings are shifted consecutively downwards by a factor of 2 for clarity [Colour figure can be viewed at
wileyonlinelibrary.com]

frequency distributions of area and volume and also in
their fractal dimensions. The frequency distributions of
CWV islands also follow power laws at a wide range
of other CWV thresholds, suggesting that the existence of
power-law distributions is not related to specific precipita-
tion dynamics such as cold pools, which can be important
for initiating and organizing convection, but instead is a
general property of thresholded islands on the CWV field.

We further assume that the CWV field is self-affine,
which allows us to apply the self-affine scaling theory.
By generating self-affine surfaces numerically, we find
that the CWV islands at the convective threshold are
well-matched by islands on a self-affine surface with a
roughness exponent of H = 0.3 at the same threshold.
Within the self-affine framework, the roughness exponent
of the topography governs the statistical properties of the
islands. Previous work gave analytical expressions for the
area distribution exponent (𝛼) and the perimeter fractal
dimension (Dl). Here, we further derive expressions for
the volume distribution exponent (𝛽) and the volume frac-
tal dimension (DV ). While the expressions for the fractal
dimensions are accurate, the expressions for 𝛼 and 𝛽 are
overestimates. The overestimation is due to the scaling
theory being applicable to all contours at all levels, not con-
tours at the convective threshold, which is high above the
mean level.

The roughness of idealized self-affine surfaces that
gives the best correspondence to CWV islands (H = 0.3)
is lower than the roughness measured directly from the
CWV power spectrum (H ≈ 0.75). We speculate that the
roughness may effectively be lower in regions of precipi-
tation, but it is also possible that the turbulent CWV field
would be better described by a more general scaling (e.g.,
multifractals). Hence, deviations from simple self-affine
scaling in the CWV field should be investigated in future

work. Nonetheless, we derive a scaling relation from the
scaling theory that relates 𝛼 to 𝛽 directly, and a similar
relation that connects Dl and DV . These scaling relations
are approximately satisfied by the precipitation clusters
and CWV islands across different thresholds. Given the
discrepancies between the H value best corresponding to
CWV islands and the H value measured from power spec-
tra, these scaling relations are particularly useful, as they
do not involve H.

The framework presented here connects precipitation
clusters to the properties of the CWV field, but the question
of what determines the roughness of the CWV field has
not been addressed. Horizontal diffusion and noise play
important roles in existing stochastic models of the CWV
field (Craig and Mack, 2013; Hottovy and Stechmann,
2015; Ahmed and Neelin, 2019). In addition, horizontal
advection by rotational winds (e.g., as in two-dimensional
turbulence) and gravity-wave dynamics (Stiassnie et al.,
1991) may also contribute to the scaling behavior of CWV.
One complication with associating precipitation clusters
with CWV islands is that precipitation reduces the local
volume of CWV islands while the horizontal moisture
flux convergence replenishes CWV. These large opposing
terms can be avoided by considering the column moist
static energy (CMSE), which is not affected by conden-
sation and precipitation (e.g., Neelin and Held, 1987).
Under the weak-temperature-gradient approximation, the
spatial patterns of water vapor and moist static energy
are similar, and we expect CMSE islands to behave sim-
ilarly to the CWV islands. The distributions of CWV
islands best matching the distributions of precipitation
clusters are explained by self-affine surfaces with H = 0.3,
which is close to H ≃ 0.39 as given by the KPZ univer-
sality class (Pagnani and Parisi, 2015). Therefore, more
work is needed to confirm whether tropical CWV displays
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KPZ-type behavior, and to identify the physical mecha-
nism in precipitation dynamics that may give rise to the
observed scaling relations. Such a mechanism may be
responsible for the smaller roughness exponent associated
with the statistics of CWV islands at a high threshold,
which is different from the larger H value of the bulk CWV
field as measured from its power spectrum.

An additional future avenue for research is to exam-
ine the response of precipitation cluster statistics to cli-
mate change (cf. Quinn and Neelin, 2017b), particularly in
high-resolution simulations that have extensive power-law
ranges. Equation 10 suggests that any changes in the
power-law exponent for the area distribution under warm-
ing would be related directly to changes in the exponent
for the volume distribution, and thus affect the spatially
integrated impacts of strong precipitation events.
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APPENDIX A. MEANINGS OF SYMBOLS

The meanings of all symbols used in the article are
summarized in Table A1.

T A B L E A1 Meanings of symbols in the main text

Symbol Meaning

𝛼 Cluster area exponent

𝛽 Cluster volume exponent

𝜎 Standard deviation of CWV

𝜇 Power spectrum exponent

A Cluster area

C Proportionality factor from CWV to precipitation

Dl Perimeter fractal dimension

DV Volume fractal dimension

H Roughness (Hurst) exponent

l Cluster perimeter length

P(r) Precipitation at location r

Pr(X) Frequency distribution of X

R Cluster radius

V Cluster volume


