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ABSTRACT: Diabatic Rossby Vortices (DRVs) are a special class of heavily precipitating extra-

tropical cyclone in which latent heating effects play a key role. As such their dynamics defies the

classic mechanism of midlatitude storm formation and poses challenges to modelling and theoret-

ical understanding. Here we build on recent theoretical advances on the growth of DRV modes in

small-amplitude moist instability calculations by exploring the structure of finite-amplitude DRV

storms in a hierarchy of models of moist macroturbulence. Simulations of moist quasigeostrophic

turbulence show a transition to a DRV dominated flow (DRV world) when the latent heating is

strong. The potential vorticity (PV) structure of the DRVs is similar to the PV structure from

small-amplitude DRV modal theory. Simulations of the moist primitive equations also transition

to DRV world when both the latent heating is strong and the Rossby number is sufficiently low. At

high Rossby numbers, however, the PV structure of storms with strong latent heating is bottom-

intensified compared to DRV modal theory due to higher order effects beyond quasigeostrophy,

and the macroturbulent flow has both DRV-like storms and frontal structures. A 1-D model of the

vertical structure of PV is solved for different Rossby numbers and stratification profiles to reconcile

the PV structures of DRVs in the simulations, small-amplitude modal theory, and observations.
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SIGNIFICANCE STATEMENT: Diabatic Rossby Vortices (DRVs) are a special class of heavily22

precipitating extratropical cyclones which grow from the effects of latent heating and as such go23

beyond the classic growth mechanism of midlatitude storm formation. DRVs have been implicated24

in extreme and poorly predicted forms of cyclogenesis and pose challenges to both modeling and25

theoretical understanding. Here, we extend our previous study on the structure and emergence of26

DRVs in small-amplitude instability calculations by exploring the structure of DRV storms and the27

conditions for the emergence of DRV dominated atmospheres (‘DRV world’) in a range of different28

finite-amplitude simulations.29

1. Introduction30

Past research has identified a special class of midlatitude storm, dubbed the Diabatic Rossby31

Vortex (DRV) (also referred to as Diabatic Rossby Wave), which derives its energy from the32

release of latent heat associated with condensation of water vapor, and as such differs fundamentally33

from the traditional understanding of midlatitude storm formation (Wernli et al. 2002; Moore and34

Montgomery 2004, 2005; Moore et al. 2008). DRVs have been found to be involved in the35

development of extreme and poorly predicted storms along the east coast of the US and the west36

coast of Europe with significant damage to property and human life (Wernli et al. 2002; Boettcher37

and Wernli 2013; Moore et al. 2008). DRVs have been identified in all oceans basins and seasons,38

and occur at a rate of roughly 10 systems per month in the Northern Hemisphere and 4 systems per39

month in the Southern Hemisphere (Boettcher and Wernli 2013, 2015).40

More recently, moist baroclinic instability calculations with an idealized GCM over a wide range41

of climates have shown that DRVs become the dominant mode of moist baroclinic instability in42

sufficiently warm climates, pointing to the increased role DRVs might play in the development43

of fast growing disturbances in a warming climate (O’Gorman et al. 2018). While we have a44

good theoretical understanding of classic cyclogenesis, both in terms of simple conceptual models45

of baroclinic instability (Eady 1949; Charney 1947; Phillips 1954; Emanuel et al. 1987; Fantini46

1995; Zurita-Gotor 2005) and potential vorticity (PV) dynamics of finite-amplitude storms (Davis47

and Emanuel 1991), we have less understanding of the formation and propagation of DRVs, the48

controls on their growth rates and length scales, and their response under climate change. Given49
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the importance of diabatic effects in cyclogenesis in the current climate and more so in a warming50

climate, developing an equivalent theoretical understanding for DRVs is critical.51

In a recent paper, we isolated the DRV growth mechanism within a conceptually simple and52

analytically tractable model and used it to derive theoretical results for the growth rate and length53

scale of such disturbances (Kohl and O’Gorman 2022). The model was a moist two-layer quasi-54

geostrophic (QG) system in which the effects of latent heating were represented through a reduction55

of the static stability in updrafts in the spirit of simple moist baroclinic theories (Emanuel et al.56

1987). The boundaries were tilted at a variable slope relative to the mean isentrope, thereby57

allowing us to control the strength of meridional PV advection relative to diabatic generation from58

latent heating. In particular this allowed us to study a pure latent-heating driven disturbance with59

no meridional PV advection. We showed that DRVs emerge as the fastest growing modes of moist60

baroclinic instability when the meridional PV gradients are weak and the moist static stability is61

also sufficiently weak (i.e., the latent heating is sufficiently strong). Furthermore, we developed62

a simple PV argument to explain the transition from wave to vortex modes observed in idealized63

GCM simulations of warm climates (O’Gorman et al. 2018). Finally, analytical solutions were64

derived for a DRV mode in an unbounded domain, and a threshold of 𝑟 = 0.38 was found above65

which DRV solutions cease to exist, where 𝑟 is the factor by which the static stability is reduced by66

latent heating in rising air.67

While the two-layer QG results in Kohl and O’Gorman (2022) makes progress on the growth68

mechanism and PV structure of DRV modes, they are based around an assumption of small69

amplitude disturbances, and the implications for finite amplitude disturbances require further in-70

vestigation. Comparing the structure of DRV modes to DRV storms in current and future climates,71

for instance, we showed that finite amplitude effects (e.g., vertical PV advection, ageostrophic72

advection) must be taken into account to relate the structure of PV anomaly and diabatic gener-73

ation in certain observed storms (Kohl and O’Gorman 2022). Furthermore, the small-amplitude74

instability results from the idealized GCM show that the fastest growing mode transitions to a DRV75

rather than a wave in warm climates, but the corresponding macroturbulent state in the idealized76

GCM remains wavy and is not dominated by DRVs (O’Gorman et al. 2018), even if DRVs can be77

identified (Kohl and O’Gorman 2022). It remains unclear if a macroturbulent flow at statistical78
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equilibrium with strong latent heating can transition to a completely DRV dominated flow, which79

we will refer to as a ‘DRV world’ from here on.80

The goal of this paper is to go beyond small-amplitude DRV modes and study the dynamics of81

finite amplitude DRVs and the potential for a transition to DRV world in a hierarchy of different82

models of moist macroturbulence, including simulations of moist macroturbulence using the QG83

equations, simulations of moist macroturbulence using the primitive equations, and a simple 1D84

model for the vertical structure of PV in small-amplitude DRV modes vs. finite-amplitude storms.85

Previous studies of the effects of moisture on macroturbulence in simple models have illustrated the86

ways in which latent heating influences the flow (Lapeyre and Held 2004; Lambaerts et al. 2011,87

2012; Brown et al. 2023; Bembenek et al. 2020; Lutsko et al. 2024). In particular, the pioneering88

study of Lapeyre and Held (2004) using a two-layer QG model found a transition to a vortex89

dominated flow for sufficiently strong latent heating. While it is possible to include a moisture90

equation and even simple precipitation physics in a QG framework (Smith and Stechmann 2017),91

the spirit of our simulations is to keep the representation of moist physics as simple as possible by92

sticking to the reduced stability parameterization of latent heating from modal theory (Emanuel93

et al. 1987, Fantini 1995, Kohl and O’Gorman 2022). Using this simple representation of latent94

heating allows a direct comparison with small-amplitude modal theory as we gradually introduce95

higher order terms in the dynamics. Our approach is deliberately phenomenological, studying large96

parameter ranges in a range of different models so as to explore the conditions leading to a clear97

transition to DRV world and to explore the differences between the behavior of small-amplitude98

modes and finite amplitude storms.99

In section 2, we begin by analyzing simulations of moist QG turbulence as a natural extension100

of the 2-layer moist QG theory of DRV modes presented in Kohl and O’Gorman (2022). The101

QG simulations parallel previous two-layer studies using a prognostic moisture equation (Lapeyre102

and Held 2004; Bembenek et al. 2020; Brown et al. 2023; Lutsko et al. 2024), but with the103

reduced stability parameterization for latent heating (Emanuel et al. 1987) which greatly reduces104

the number of parameters involved and allows for better comparison with the work of O’Gorman105

et al. (2018) and Kohl and O’Gorman (2022). We show that the flow transitions from a state of106

wavy jets interspersed with vortices to a vortex dominated flow (‘DRV world’) as the latent heating107

is increased. By analyzing the PV structure and PV budget of the storms in the strong latent heating108
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regime of the QG simulations, we confirm that the flow has transitioned to DRV world. In section109

3, we study moist primitive equation simulations in low, intermediate and high Rossby number110

regimes to explore the effects of higher-order effects beyond QG on the structure of diabatically111

driven storms and the overall character of the macroturbulent circulation. The simulations are112

an attempt to bridge the gap between theoretical studies of DRVs based around the moist-QG113

equations versus GCM simulations and observations. In particular, strong latent heating is found114

to lead to a DRV world at low Rossby number but not at high Rossby number. In section 4, we115

distill higher-order effects into a toy model of the vertical structure of PV in DRVs that is solved116

to reproduce much of the variety of the PV structure of DRV storms from the simulations in the117

previous two sections of the paper and also from reanalysis (Kohl and O’Gorman 2022). In section118

5, we summarize our results and discuss future work.119

2. DRVs in Simulations of Moist QG Turbulence120

a. Model Formulation and Governing Equations121

A natural extension of the two-layer moist QG theory of DRV modes presented in Kohl and122

O’Gorman (2022) is to run simulations of moist QG turbulence. The two-layer moist QG equations123

with equal layer height, 𝛽-plane approximation and low level drag take the nondimensional form124

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) + 𝛽𝜙𝑥 = −𝑅

2
∇2(𝜙− 𝜏), (1)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) + 𝛽𝜏𝑥 +𝑤 =
𝑅

2
∇2(𝜙− 𝜏), (2)

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) + 𝑟 (𝑤)𝑤 = 𝑟 (𝑤)𝑤, (3)

with barotropic and baroclinic stream function 𝜙 =
𝜓1+𝜓2

2 and 𝜏 =
𝜓1−𝜓2

2 where 𝜓1 refers to the125

streamfunction in the upper layer and 𝜓2 to the streamfunction in the lower layer, and with Jacobian126

𝐽 (𝐴, 𝐵) = 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 and domain mean average (...) where subscripts are used to denote partial127

derivatives. The equations have been nondimensionalized assuming an advective time scale, with128

the deformation radius 𝐿𝐷 = 𝑁𝐻/(
√

2 𝑓 ) as the length scale, where 𝐻 is the layer height, and 𝑈 as129

the velocity scale which is equivalent to the zonal velocity in the basic static described below (𝑈130
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in the top layer, and −𝑈 in the bottom layer).1 Non-dimensional numbers include 𝑅 = 𝑅𝑑𝑖𝑚𝐿𝐷/𝑈131

where 𝑅𝑑𝑖𝑚 is the dimensional drag coefficient, and 𝛽 = 𝛽𝑑𝑖𝑚𝐿
2
𝐷
/𝑈 where 𝛽𝑑𝑖𝑚 is the dimensional132

𝛽 parameter. Effects of latent heating on the dynamics are encapsulated in the spirit of simple133

moist theories (Emanuel et al. 1987; Fantini 1995) by the nonlinear factor134

𝑟 (𝑤) =

𝑟, 𝑤 ≥ 0

1, 𝑤 < 0
(4)

which reduces the static stability by a factor 𝑟 in regions of ascent. Physically, the nonlinear factor135

𝑟 (𝑤) captures that as moist air ascends, it releases latent heat through condensation, resulting in136

a locally reduced static stability. Conversely, descending air, having undergone precipitation and137

become subsaturated, experiences the full static stability. Moist thermodynamics thus introduces138

an additional nonlinearity into the equations which can lead to interesting dynamics. We keep139

𝑟 > 0 so that there is no convective instability. The term 𝑟 (𝑤)𝑤 in Eq. 3 acts as a spatially uniform140

radiative cooling to ensure that the domain-mean temperature remains constant even though there141

is latent heating. Eqs. (1-3) are obtained from Eqs. A6-A8 in Kohl and O’Gorman (2022) after142

setting the boundaries at top and bottom to be horizontal ℎ1 = ℎ2 = 0, and including the 𝛽 effect143

and low level drag.144

The system is allowed to go moist baroclinically unstable about a mean temperature gradient in145

thermal wind balance, which corresponds to 𝜏0 = −𝑦, 𝜙0 = 0 and 𝑤0 = 0. We set 𝜏 = 𝜏0+𝜏′, 𝜙 = 𝜙′,146

and 𝑤 = 𝑤′. Eqs. (1-3) then take the form147

𝜕𝑡∇2𝜙+ 𝐽 (𝜙,∇2𝜙) + 𝐽 (𝜏,∇2𝜏) + 𝛽𝜙𝑥 = −∇2𝜏𝑥 −
𝑅

2
∇2(𝜙− 𝜏) − 𝜇∇4(∇2𝜙), (5)

𝜕𝑡∇2𝜏 + 𝐽 (𝜙,∇2𝜏) + 𝐽 (𝜏,∇2𝜙) +𝑤 + 𝛽𝜏𝑥 = −∇2𝜙𝑥 +
𝑅

2
∇2(𝜙− 𝜏) − 𝜇∇4(∇2𝜏), (6)

𝜕𝑡𝜏 + 𝐽 (𝜙, 𝜏) + 𝑟 (𝑤)𝑤 = 𝜙𝑥 − 𝜇∇4𝜏−𝛼𝜏 + 𝑟 (𝑤)𝑤 (7)

where we have dropped all the primes for notational simplicity, and 𝜙, 𝜏 and 𝑤 represent pertur-148

bations about the basic state that have spatially homogeneous statistics. The horizontal means of149

the stream functions 𝜙 and 𝜏, and the mean of 𝑤 are all enforced to be zero. Setting the mean150

1Discretizing the continous thermodynamic equation leads to a deformation radius involving 𝑁 , rather than a reduced gravity, at the mid-
tropospheric level.
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of 𝜏 to zero is equivalent to including the spatially uniform radiative cooling term 𝑟 (𝑤)𝑤. Eqs.151

(5-7) also include a small-scale dissipation parametrized by a fourth-order hyper-diffusion with152

coefficient 𝜇; and a large-scale radiative damping parameterized by a linear Newtonian relaxation153

with coefficient 𝛼. The large-scale radiative damping was found to be necessary for simulations154

with roughly 𝑟 < 0.4 and thus large energy input from latent heating because the linear drag term155

was not enough to remove the energy at large scales and allow the simulations to reach a statistical156

steady state (see section 2d for further details). The inability of the static stability to adjust in QG157

and the imposition of a fixed meridional temperature gradient make for a particularly simple and158

homogeneous model setup for analysis, but they also tend to limit the ability of the QG model to159

equilibrate.160

Our system of moist QG equations differs from those of Lapeyre and Held (2004), Brown et al.161

(2023), and Lutsko et al. (2024) primarily by always assuming upward motion to be saturated.162

Thus, no prognostic moisture equation is needed, and the effects of latent heating are captured163

in terms of a single parameter 𝑟. So far the 𝑟 parametrization has been used in studies of moist164

baroclinic instability as an initial value problem (Emanuel et al. 1987, Montgomery and Farrell165

1991, Montgomery and Farrell 1992, Fantini 1995, Moore and Montgomery 2004, Kohl and166

O’Gorman 2022) with the exception of O’Gorman et al. (2018) which considered both small-167

amplitude instability and a macroturbulent steady state. To our knowledge, this is the first time168

that the 𝑟-parametrization has been applied to macroturbulent simulations in a two-layer model.169

We choose this system here for its simplicity and ease of comparison to moist baroclinic theories,170

but acknowledge that having a prognostic moisture equation, like in Lapeyre and Held (2004),171

allows for conservation properties that are more desirable when developing closure theories for PV172

fluxes (which is not our focus here). A comparison of our simulations to previous studies using a173

prognostic moisture equation is given in Appendix A.174

b. Numerical Simulations: Dry vs. Moist Regimes175

We solve the moist two-layer QG Eqs. (5-7) on a doubly-periodic domain of size 𝐿 = 12𝜋 with176

512x512 grid points using Dedalus, a flexible framework for numerical simulations with spectral177

methods (Burns et al. 2020). Dedalus advances the entire state forward in time simultaneously178

using a mixed implicit-explicit scheme, implicitly solving the time updates and other linear terms,179
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and thus it is not a problem that both Eqs. 6 and 7 involve time derivatives of 𝜏. The nonlinear180

dependence of latent heating on the vertical velocity through 𝑟 (𝑤) means that the equations are181

highly nonlinear, and it would be difficult to prove the solutions are unique. However, our previous182

results from solving a nonlinear QG omega equation with this representation of latent heating were183

in good agreement with solutions of the primitive equations (see Figure 1 of Kohl and O’Gorman184

(2024)).185

We show results for simulations with 𝑟 = 1 (a dry simulation) and 𝑟 = 0.01 (a moist simulation186

with strong latent heating). We fix 𝛽 = 0.78 equal to the value of Lapeyre and Held (2004).2 This187

corresponds to a moderate dry supercriticality of 𝜒 = 𝛽−1 = 1.28, where 𝜒 > 1 is required for the188

inviscid dry model to go unstable. We set 𝑅 = 0.11 and 𝜇 = 10−5 for both values of 𝑟. We set 𝛼 = 0189

for 𝑟 = 1 and 𝛼 = 1.7 for 𝑟 = 0.01. The simulations are started using random initial conditions for190

the stream functions 𝜙 and 𝜏, where we have filtered out all wavenumbers with 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 > 3191

to avoid having to integrate a lot of small scale noise in the initial phase of the simulation. The192

simulations are run from 𝑡 = 0 until 𝑡 = 120 at 𝑟 = 0.01 and 𝑡 = 150 at 𝑟 = 1 and outputted in193

snapshots at time intervals of 0.25. After an initial phase of modal instability, the simulations settle194

into a macroturbulent state (roughly at 𝑡 = 40 for 𝑟 = 0.01 and 𝑡 = 60 at 𝑟 = 1). This happens more195

quickly at 𝑟 = 0.01 because the growth rate of the modes is increased by latent heating.196

We begin by comparing the structure of the flow field in the two simulations. The relative203

vorticity in the upper and lower layer, alongside the vertical velocity are shown in Fig. 1. Looking204

at the dry simulation (Fig. 1a,c,e), we see that the flow settles into the well known state of 𝛽-plane205

turbulence: wavy jets interspersed with vortices. The relative vorticity is weaker in the lower than206

upper layer because of the low level drag. The vertical velocity field has large-scale ascending and207

descending regions of similar area and magnitude that are mostly confined to the latitude bands of208

the jets. We have provided an animation in Supplemental Video S1.209

In contrast to the dry simulation, we see that the flow in the moist simulation at 𝑟 = 0.01 (Fig. 1 b,210

d, f) has transitioned to a DRV world that is dominated by small scale vortices, despite the presence211

of 𝛽. In fact when the simulation was run with 𝛽 changed down to 𝛽 = 0 or up to 𝛽 = 1.5, there was212

no noticeable effect on the overall flow field (not shown). As explored in the next section, tendencies213

in the PV budget at this low 𝑟 = 0.01 are dominated by diabatic generation, nonlinear advection and214

2Please note that compared to Lapeyre and Held (2004), our deformation radius is defined as 𝐿𝐷 = 𝑁𝐻/(
√

2 𝑓 ) instead of 𝐿𝐷 = 𝑁𝐻/ 𝑓 but
the magnitude of our mean flow is 𝑈 instead of their 𝑈/2 so that the definition of 𝛽 = 𝛽𝑑𝑖𝑚𝐿2

𝐷
/𝑈 is equivalent.
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Fig. 1. Snapshots of relative vorticity in the upper layer (a,b) and lower layer (c,d), and vertical velocity (e,f)

in the moist two-layer QG simulations at statistical equilibrium for 𝑟 = 1.0 (a,c,e) and 𝑟 = 0.01 (b,d,f). The flow

transitions from a wavy jet state interspersed with vortices at 𝑟 = 1.0 to a vortex dominated flow at 𝑟 = 0.01. The

vortices migrate poleward over time leaving a trail that can be seen in the vertical velocity snapshot in (f) and

also more clearly over time in Supplementary Video S2. Note that different colorbar ranges are used for left and

right panels.
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drag, so that changes to 𝛽 make little difference. Indeed, the unimportance of advection across the215

mean meridional PV gradient in the simulation is consistent with a vortex dominated rather than216

wavy flow. The vortices propagate northwards in our simulations through nonlinear advection and217

the trails of this propagation can be seen in the form of tendrilly north-south structures that are218

easiest to see in the vertical velocity field. This is particularly evident by looking at an animation219

of the evolution of the flow over time (Supplemental Video S2).220

The vertical velocity field in the moist QG simulation has narrow regions of strongly ascending221

motion compared to wide regions of weakly descending motion (Fig. 1 f). We measure this222

asymmetry of the vertical velocity distribution using the vertical-velocity asymmetry parameter 𝜆223

which appears in the effective static stability of O’Gorman (2011). For a vertical velocity with zero224

mean, 𝜆 = 0.5 corresponding to a symmetric distribution and 𝜆 = 1 corresponds to the limit in which225

updrafts are infinitely fast and narrow. The moist QG simulation at 𝑟 = 0.01 has a remarkably high226

value of 𝜆 = 0.94. By contrast the asymmetry parameter is much lower at 𝜆 = 0.73 for idealized227

GCM simulations at the same 𝑟 = 0.01 (O’Gorman et al. 2018). Kohl and O’Gorman (2024)228

introduced a simple toy model for 𝜆 in macroturbulent flow based on the moist QG omega equation229

which was able to roughly predict 𝜆 in the idealized GCM simulations and in reanalysis data. The230

key assumption of the toy model is that the dynamical forcing on the right-hand side of the moist231

omega equation is unskewed for macroturbulent flow, and this is found to also be the case in the232

QG simulations shown here. As shown in Appendix B, the toy model for 𝜆 correctly predicts that233

the QG simulations have a higher 𝜆 than the idealized GCM in part because the overall length scale234

of the flow becomes smaller when the vortex regime emerges. Thus DRV world illustrates that235

high 𝜆 is in principle possible in macroturbulent flow even if it is not seen so far in reanalysis or in236

GCM simulations.237

A similar transition to a vortex dominated state in the strong latent heating regime has first been238

observed by Lapeyre and Held (2004) in a moist-two layer QG system using prognostic moisture.239

A comparison of our simulations to the results of Lapeyre and Held (2004) and Brown et al.240

(2023) is given in Appendix A, showing similarities in terms of energy spectra and the transition241

threshold for a vortex dominated flow, but also a difference in terms of the magnitude of skewness242

of the lower-layer vorticity in the vortex regime. In addition, Lapeyre and Held (2004) found that243

strong vortices had the same sign of vorticity in both layers (even if the upper layer vorticity was244
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Fig. 2. Storm composite of the PV anomaly (shading) in (a) the lower layer, and (b) the upper layer of the

moist QG turbulence simulations at 𝑟 = 0.01. The vertical velocity is also shown (black contour); note negative

velocities are too weak to be shown at the chosen contour interval of 50. Composites were created by averaging

over the 10 strongest vertical velocity maxima at each simulation output between 𝑡 = 40−120 when the simulation

had reached a macroturbulent state.
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264

weaker), whereas the vortices in our simulation have a baroclinic structure consisting of dipoles245

of positive PV anomalies in the lower layer and negative PV anomalies in the upper layer. Further246

work comparing simulations with the 𝑟 parameterization of latent heating vs. prognostic moisture247

equations would be helpful to better understand these differences.248

c. Storm Composites of PV and Dynamical Balances in DRV World249

Fig. 2 shows the storm composite of the PV anomaly and vertical velocity in the upper and lower250

layer of the moist QG runs at 𝑟 = 0.01. Composites were created by averaging over the 10 strongest251

vertical velocity maxima at each simulation output time between 𝑡 = 40−120 when the simulation252

had reached a macroturbulent state. The PV takes on the typical dipole structure of DRV modes253

with a positive PV anomaly in the lower layer and a negative PV anomaly in the top layer (e.g.,254

Kohl and O’Gorman 2022). The PV anomalies are displaced horizontally such that the updraft255

occurs east of the low level positive PV anomaly and west of the upper level negative PV anomaly.256

The updraft may be thought of as resulting from the poleward motion induced by the PV anomalies257

which leads to isentropic upgliding in the presence of a meridional temperature gradient. ‘Trails’258

of PV can be seen to go southward because the storms are moving northward.259
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Further insights into the dynamical balances maintaining the storms can be obtained by studying265

the tendencies in the PV budget. In the lower layer, the PV budget is given by266

𝜕𝑡𝑞2 = 𝑞2𝑥 − 𝑣2𝑞2𝑦 − 𝐽 (𝜓2, 𝑞2) + (1− 𝑟 (𝑤))𝑤−𝑅∇2𝜓2 −𝛼𝜏 + 𝑟 (𝑤)𝑤− 𝜇∇4𝑞2, (8)

where 𝑞2 =∇2𝜓2+ (𝜓1−𝜓2)/2 is the PV anomaly in the lower layer, 𝜕𝑡𝑞2 is the time tendency of the277

PV in the lower layer, 𝑞2𝑥 is PV advection by the mean zonal wind, −𝑣2𝑞2𝑦 is advection of the mean278

PV gradient by the meridional wind (𝑞2𝑦 includes contributions from both the mean temperature279

gradient and 𝛽), −𝐽 (𝜓2, 𝑞2) is the nonlinear advection, (1− 𝑟 (𝑤))𝑤 is the diabatic PV tendency280

from latent heating, −𝑅∇2𝜓2 is the drag term, −𝛼𝜏 is the large-scale radiative damping, 𝑟 (𝑤)𝑤 is281

the spatially uniform radiative cooling, and −𝜇∇4𝑞2 is the hyper-diffusion. The composite of the282

PV tendencies in the lower layer are shown in Fig. 3 centered on the vertical velocity maxima.283

As can be seen from Fig. 3a, the net effect of all tendencies is to give poleward propagation and284

amplification of the PV anomaly. The PV tendencies are dominated by mean zonal PV advection,285

nonlinear advection and diabatic generation from latent heating. Meanwhile, the drag term, diabatic286

generation from radiation (large scale radiative damping and spatially uniform radiative cooling),287

hyper-diffusion and the meridional advection of mean meridional PV gradients play a negligible288

role. This confirms the strong diabatic character of the storms in this regime with small 𝑟 and thus289

strong latent heating.290

Fig. 4 shows a cross-section through the PV tendencies of Fig. 3 averaged between −0.2 <297

𝑦 < 0.2. From left to right, we observe that in the descending part of the solution to the west298

(−1 < 𝑥 < −0.4), where the diabatic generation from latent heating is zero, the PV tendency is299

given by the sum of mean zonal and nonlinear advection (with nonlinear advection the slightly more300

dominant contribution). In the ascending part of the solution (−0.4 < 𝑥 < 0.4), the PV tendency is301

the result of a three way balance between diabatic generation from latent heating, zonal advection302

and nonlinear advection. Here mean zonal PV advection plays a more dominant role than nonlinear303

advection. In the descent region to the east of the ascent area (0.4 < 𝑥 < 1), a negative PV tendency304

is caused by nonlinear advection with all other terms being negligible.305

The dynamical balances governing the storms are very similar to that of the small-amplitude306

DRV mode of Kohl and O’Gorman (2022) with the addition of a nonlinear term that gives poleward307

advection, which leads us to the conclusion that the storms are indeed DRVs and that the statistical308
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Fig. 3. Composite of the PV tendencies in the lower layer for the storms in the two-layer moist QG turbulent

simulation at 𝑟 = 0.01 showing (a) PV tendency 𝑞2𝑡 , (b) mean zonal advection 𝑞2𝑥 , (c) mean meridional

advection −𝑣2𝑞2𝑦 , (d) nonlinear advection −𝐽 (𝜓2, 𝑞2), (e) diabatic generation from latent heating(1− 𝑟 (𝑤))𝑤,

(f) drag−𝑅∇2𝜓2, (g) diabatic generation from radiation−𝛼𝜏+𝑟 (𝑤)𝑤 (large-scale radiative damping and spatially

uniform radiative cooling), and (h) hyper-diffusion −𝜇∇4𝑞2 . Also shown to help interpretation is (h) the lower-

layer PV (𝑞2). Composites were created by averaging over the 10 strongest vertical velocity maxima at each

simulation output between 𝑡 = 40− 120 when the simulation had reached a macroturbulent state. The mean

meridional advection and diabatic tendency from latent heating are proportional to lower-layer meridional

velocity 𝑣2 and the midlevel vertical velocity 𝑤, respectively. Note that the mean zonal wind in the lower layer

is westward, and that different panels use different colorbar ranges.
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equilibrium of the simulation is a DRV world. The main difference with the mode is the addition309

of nonlinear advection. Looking at the structure of the nonlinear advective tendency in Fig. 3d,310

we see that it is causing the poleward propagation that is evident in the net PV tendency and in311

Supplemental Video S2. Note that if we had used a basic state with westerly winds in the lower312

layer, the storms would also propagate eastwards. Poleward self advection is not found as strongly313

for the DRV storms observed in the current climate, which primarily have an eastward propagation314

(Boettcher and Wernli 2013). However, poleward propagation is found for a DRV storm identified315
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Fig. 4. Cross section through the PV tendencies in the lower layer shown in Fig. (3) averaged between

−0.2 < 𝑦 < 0.2. Colored lines show the PV tendency 𝑞2𝑡 (blue), mean zonal advection 𝑞2𝑥 (red), mean meridional

advection −𝑣2𝑞2𝑦 (green), nonlinear advection −𝐽 (𝜓2, 𝑞2) (red dashed), diabatic generation from latent heating

(1−𝑟 (𝑤))𝑤 (black), and the drag −𝑅∇2𝜓2 (yellow). Note that for the PV tendency and nonlinear advection, the

meridional average includes both positive and negative contributions. We do not show the diabatic contribution

from radiation and the hyper-diffusion since they were found to be small (see Fig. 3).
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295
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in the warm climate regime of idealized GCM simulations (see Fig. 1 of Kohl and O’Gorman316

2022). Self-advection relies on the interaction between the lower positive PV anomaly and the317

upper negative PV anomaly, with the meridional winds induced by each PV anomaly advecting the318

other PV anomaly poleward.3 We speculate that such poleward self-advection is weaker in DRVs319

in the current climate, because of reduced upper level negative PV anomalies as discussed in the320

next section.321

Similar results for the vertical PV structure and the dynamical balances have been found by322

compositing on the lower-layer PV anomaly, rather than the vertical velocity, with the exception323

that the upper-layer negative PV anomaly is weakened compared to the lower-layer PV anomaly,324

and the PV tendency implies northwestward propagation instead of northward propagation (not325

shown).326

3The self-advection by two opposite signed QG PV anomalies in different layers is like that of ‘hetons’ as discussed in Hogg and Stommel
(1985), and it is distinct from the beta drift experienced by tropical cyclones.
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d. Quantifying the Transition to DRV World327

In this section, we seek to quantify the transition to DRV world as 𝑟 is decreased and latent331

heating becomes stronger. One sign of a transition to vortices dominating the flow is that when the332

QG simulations are run without linear radiative damping (𝛼 = 0), the simulations do not reach a333

statistical equilibrium for 𝑟 ≲ 0.4. Instead a single vortex in the domain grows rapidly to large size334

and become very energetic such that the domain-mean energy blows up rather than equilibrating335

(in practice the adaptive timestep in the solver becomes smaller and smaller, and we terminate the336

simulation). Fig. 5 shows the domain mean energy (∇𝜙)2 + (∇𝜏)2 + 𝜏2 as a function of time for a337

series of simulations at selected 𝑟 values with 𝛼 = 0, illustrating the energy blow up for 𝑟 ≲ 0.4.338

Interestingly, the energy blow-up threshold of 𝑟 ≃ 0.4 is close to the exact threshold of 𝑟 = 0.38339

below which DRV modes can exist in an infinite domain in the tilted moist two-layer model (see340

Fig. 6 of Kohl and O’Gorman (2022)). Thus small-amplitude modal theory seems to provide341

an estimate for the 𝑟 value at which DRV world starts to emerge, at least as measured by the342

need for radiative damping to equilibrate the vortices. But it is somewhat surprising that the343

infinite-domain result in the tilted model (which has no basic-state PV gradients) seems to be344

relevant to macroturbulence with PV gradients in a finite domain. When Kohl and O’Gorman345

(2022) analyzed the moist instability in a finite domain with basic-state PV gradients, there was346
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no obvious threshold from wave to vortex modes at 𝑟 = 0.4 (see Fig. 9a in Kohl and O’Gorman347

(2022)). However, it is possible that the finite amplitude vortices are different from the modes in348

this regard because meridional PV advection plays less of a role for the finite amplitude vortices349

considered here compared to small-amplitude modes. This could make the fully tilted model –350

without PV gradients – a better analogy for the fully turbulent simulations. The question of why351

the infinite-domain result is relevant remains open.352

To further quantify the transition to DRV world, we have performed a second set of simulations357

using a constant radiative forcing rate 𝛼 = 0.15 spanning values of 𝑟 = 0.3−1. The value 𝛼 = 0.15358

was chosen as an intermediate value that doesn’t overly damp the 𝑟 = 1 simulation but still allows359

equilibration of the 𝑟 = 0.3 simulation. The simulations are run until 𝑡 = 250 and outputted every360

Δ𝑡 = 2 times. The aim here is quantify the emergence of DRV world without the complicating361

factor of increases in the minimum required 𝛼 for statistical equilibration as 𝑟 is lowered. Snapshots362

of the resulting relative vorticity field in the upper layer are shown in Fig. 6 for a select number363

of 𝑟 values. Note that for the value of 𝛼 used here an equilibrated state would not be reached for 𝑟364

less than 0.3, and that the flow at 𝑟 = 1 appears to be somewhat over damped. As 𝑟 is lowered the365

flow field becomes increasingly populated by small-scale vortices (Fig. 6).366

We quantify the transition to DRV world by introducing two metrics M1 and M2 that are inspired367

by our PV-based understanding of the growth of DRVs:368

M1 =
𝑚𝑎𝑥((𝑞1 ¤𝑞1 + 𝑞2 ¤𝑞2)2)

𝑚𝑎𝑥(𝑞2
1 + 𝑞

2
2)𝑚𝑎𝑥(𝑞2

1𝑡 + 𝑞
2
2𝑡)

, (9)

M2 =
𝑚𝑎𝑥((𝑞1 ¤𝑞1 + 𝑞2 ¤𝑞2)2)
𝑚𝑎𝑥((𝑞2

1 + 𝑞
2
2)2)

, (10)

where 𝑞𝑖 are the PV anomalies in each layer, ¤𝑞𝑖 are the PV tendencies from latent heating in each373

layer, and 𝑞𝑖𝑡 are the partial derivatives of the PV anomalies in each layer with respect to time. The374

maximum functions are taken as a spatial maximum for each snapshot, and the maximum could375

be at different locations for different maxima in the definition. The numerator of both metrics376

measures the collocation of PV anomalies with diabatic PV generation of the same sign which is a377

hallmark of latent-heating driven storms. M1 is normalized in such a way that it is dimensionless,378

and approaches 1 as the storms become diabatically dominated. We refer to it as the moist storm379

metric. M2 is normalized in such a way that it can be interpreted as a growth rate of moist storms,380
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Fig. 6. Snapshots of the relative vorticity in the upper layer of the moist QG simulations for (a) 𝑟 = 1, (b)

𝑟 = 0.5, (c) 𝑟 = 0.4, and (d) 𝑟 = 0.3. All simulations shown were run with the same radiative damping rate of

𝛼 = 0.15. As 𝑟 is lowered, the flow becomes increasingly dominated by small-scale vortices. Note that different

panels use different colorbar ranges.

353

354

355

356

and we refer to it as the moist growth rate metric. For each simulation, the metrics were calculated381

between 𝑡 = 100− 250 in the turbulent phase of the simulation and then averaged in time. The382

results are shown in Fig. 7a,b as a function of 𝑟. Both metrics increase exponentially as 𝑟 is reduced383

with a marked increase for 𝑟 < 0.5. For M2, the increase is much more rapid than implied by384

“Clausius-Clapeyron scaling” (i.e., the increase in latent heating from reducing 𝑟 at fixed 𝑤 which385

would would imply M2 ∼ (1− 𝑟)2). Taken together, the behavior of the moist storm and moist386

growth rate metrics versus 𝑟 and the equilibration behavior of the simulations without radiative387

damping suggest that DRV world begins to emerge at approximately 𝑟 = 0.4.388

18



0 0.2 0.4 0.6 0.8 1

Reduction factor r

0

0.2

0.4

0.6

0.8

1
 Moist Storm Metric

Metric

0 0.2 0.4 0.6 0.8 1

Reduction factor r

0

0.1

0.2

0.3

0.4

0.5
 Moist Growth Rate Metric

Metric

CC-scaling

-0.5 0 0.5

u
1

0

6pi

12pi

y

 Zonal Jets (Upper Layer)

r=0.3

r=1

(a) (b) (c)
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Remarkably, our transition threshold to DRV world of 𝑟 = 0.4 is the same as the transition389

threshold to a vortex regime previously reported by Lapeyre and Held (2004) using a different390

moist QG model with a prognostic moisture equation. In particular, their reported threshold of391

𝜇sat = 2.5 corresponds to our threshold of 𝑟 = 0.4 as shown in Appendix A. This correspondence392

suggests that the transition is not specific to the details of the latent heating parameterization.393

The transition to a vortex dominated regime is also associated with changes in the jet structure.394

Fig. 7c shows the zonal- and time-mean zonal wind averaged over 𝑡 = 100−250.4 As 𝑟 is lowered395

from 𝑟 = 1 to 𝑟 = 0.3, we find that the jet spacing widens. At 𝑟 = 0.3, there are still jets present396

even though the flow field is dominated by vortices. At 𝑟 = 0.01, the jets have completely vanished397

(Fig. 1). However, the simulation at 𝑟 = 0.01 has to be run with a much stronger radiative damping398

(𝛼 = 1.7 instead of 𝛼 = 0.15) to reach statistical equilibrium. Thus while it seems likely that the399

full disappearance of the jets at 𝑟 = 0.01 is due to an even stronger vortex regime, we cannot rule400

out that it is caused by stronger radiative damping.401

3. DRVs in Turbulent Simulations of the Moist Primitive Equation402

We now investigate strong diabatic storms in a set of more realistic simulations using the moist403

primitive equations. After nondimensionalization, the governing parameter that will be investigated404

4Experimenting with different averaging times, we note that while the jet positions are fairly stable at 𝑟 = 1, they are less so at 𝑟 = 0.3 and the
jet position moves meridionaly over time.
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is the Rossby number. Switching between high and low Rossby number regimes, while maintaining405

strong latent heating, will allow us to investigate the role of higher order terms in the PV dynamics406

beyond QG.407

a. Model Formulation408

The moist primitive equations in Boussinesq form, with constant planetary vorticity, 𝑟409

parametrization for latent heating, and Newtonian relaxation of temperature take the form410

𝐷u
𝐷𝑡

+ 𝜇𝑢∇4u+ 𝑓0k×u = −∇𝜙−𝑅u, (11)

𝐷𝜃

𝐷𝑡
+ 𝜇𝜃∇4𝜃 = (1− 𝑟)𝑤𝜃𝑧 −𝛼 (𝜃 − 𝜃𝑟), (12)

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, (13)
𝑔

𝜃0
𝜃 = 𝜙𝑧, (14)

𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (15)

𝜃𝑟 =
𝑧𝜃0𝑁

2

𝑔
− 𝜃0

𝑔

𝑓0𝑈

𝐻
𝑦, (16)

where u = (𝑢, 𝑣) is the horizontal velocity field, 𝑤 is the vertical velocity field, ∇ is the horizontal411

gradient, 𝜙 is the geopotential height, 𝜃 is the potential temperature, 𝜃0 is the reference potential412

temperature, 𝜃𝑟 (𝑦, 𝑧) is a zonally uniform reference state that is constant in time, 𝑓0 is the constant413

Coriolis parameter, 𝑟 (𝑤) is the nonlinear reduction factor, 𝛼 is a radiative relaxation constant, 𝑔 is414

the gravitational constant, 𝐻 is the tropospheric height, 𝑈/𝐻 is the shear implied by thermal wind415

for the reference 𝜃𝑟 profile, 𝑁 is a constant static stability, 𝐿𝑦 is the domain length in the meridional416

direction, 𝑅 is a drag coefficient, and (𝜇𝑢,𝜇𝜃) are coefficients for horizontal hyperdiffusion.417

The equations are being forced by relaxing 𝜃 at a rate 𝛼 to a reference state 𝜃𝑟 with a constant418

static stability and a linear temperature variation in the meridional direction. In the vertical, the419

domain is bounded by vertical plates at 𝑧 = 0, 𝐻 with boundary condition 𝑤 = 0, where 𝐻 now420

represents the full tropospheric depth. Linear drag and small-scale dissipation are applied in the421

momentum equations. We have found it helpful to use a drag that is constant throughout the422

troposphere (rather than confined to the lower levels) to prevent the build up of small-scale vertical423
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velocities in the upper levels particularly at high Rossby number. This build up may be due to424

spurious wave reflections at the boundary, and for simplicity we use a vertically constant drag for425

all simulations.426

The 𝛽 term is neglected here, since it was found to be negligible in the QG simulations and it427

would introduce a term linear in 𝑦 in the momentum equations that cannot be represented by the428

doubly-periodic Dedalus solver (Burns et al. 2020).429

We make the model variables statistically homogeneous in the horizontal by considering the430

deviation 𝜃′ from the reference temperature, such that431

𝜃 = 𝜃𝑟 (𝑦, 𝑧) + 𝜃′(𝑥, 𝑦, 𝑧, 𝑡). (17)

Similarly for geopotential, we define432

𝜙 = 𝜙𝑟 (𝑦, 𝑧) +𝜙′(𝑥, 𝑦, 𝑧, 𝑡), (18)

where433

𝜙𝑟 = 𝑧2𝑁2/2− 𝑓0(𝑈/𝐻)𝑦𝑧. (19)

Plugging these decompositions into Eqs.11-15 leaves us with434

𝐷u
𝐷𝑡

+ 𝜇𝑢∇4u+ 𝑓0k×u = −∇𝜙𝑟 −∇𝜙′−𝑅u, (20)

𝐷𝜃′

𝐷𝑡
+ 𝑣𝜃𝑟,𝑦 +𝑤𝜃𝑟,𝑧 + 𝜇𝜃∇4𝜃′ = (1− 𝑟)𝑤𝜃𝑟,𝑧 + (1− 𝑟)𝑤𝜃′𝑧 −𝛼𝜃′, (21)

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, (22)
𝑔

𝜃0
𝜃′ = 𝜙′𝑧, (23)

𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (24)

We note that u includes the mean vertical shear unlike in the two-layer QG model where we defined435

a perturbation baroclinic streamfunction.436
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Next, we nondimensionalize the equations using QG scaling (but keeping all terms) such that437

𝑥, 𝑦 ∼ 𝐿𝐷 with deformation radius5 𝐿𝐷 = 𝑁𝐻/ 𝑓0 , 𝑧 ∼ 𝐻, 𝑡 ∼ 𝐿𝐷/𝑈, u,v ∼𝑈, 𝑤 ∼ 𝜖𝑈𝐻/𝐿𝐷 where438

𝜖 =𝑈/ 𝑓0𝐿𝐷 is the Rossby number, 𝜙′ ∼ 𝑓0𝑈𝐿𝐷 , 𝜃′ ∼ 𝜃0 𝑓0𝑈𝐿𝐷/𝑔𝐻 to obtain the nondimensional-439

ized equations440

𝜖
𝐷u
𝐷𝑡

+ �̃�𝑢∇4u+k×u = 𝑧ey −∇𝜙′−𝑅u, (25)

𝐷𝜃′

𝐷𝑡
− 𝑣 +𝑤 + �̃�𝜃∇4𝜃′ = (1− 𝑟)𝑤 + 𝜖 (1− 𝑟)𝑤𝜃′𝑧 − �̃�𝜃′, (26)

𝑢𝑥 + 𝑣𝑦 + 𝜖𝑤𝑧 = 0, (27)

𝜃′ = 𝜙′𝑧, (28)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧, (29)

with nondimensional numbers 𝜖 = 𝑈
𝑓0𝐿𝐷

= 𝑈
𝑁𝐻

, 𝑅 = 1
𝑓0
𝑅, �̃� =

𝐿𝐷

𝑈
𝛼, �̃�𝑦 =

1
𝐿𝐷

𝐿𝑦, �̃�𝑢 = 1
𝑓0𝐿

4
𝐷

𝜇𝑢, and441

�̃�𝜃 =
1

𝑈𝐿3
𝐷

𝜇𝜃 and unit vector in the meridional direction ey.442

We note that as a result of scaling horizontal length scales with the deformation radius, what443

we refer to as the Rossby number in these simulations 𝜖 = 𝑈
𝑓0𝐿𝐷

could also be interpreted as the444

Froude number 𝑈
𝑁𝐻

or the inverse square root of the Richardson number 𝑁2𝐻2

𝑈2 . We stick to the445

designation of Rossby number here to reflect the intuition that a low Rossby number limit recovers446

QG dynamics. Furthermore, we note that in the definition of the Rossby number 𝑈/𝐻 should be447

interpreted as the mean-state zonal wind shear (rather than, say, the local wind shear in a storm)448

and as such 𝜖 =𝑈/𝑁𝐻 refers to a mean-state Rossby number rather than the Rossby number of an449

individual storm (which could be much higher).450

The equations are solved using a spectral solver with adaptive time stepping (Burns et al. 2020)451

on a doubly periodic square domain of side �̃�𝑦 = 6𝜋, with horizontal plates at 𝑧 = 0 and 𝑧 = 1 and452

128×128×10 grid points. Chebyshev polynomials are used as basis functions in the vertical (the453

grid spacing between the 10 vertical levels is close to uniform in the interior but slightly smaller454

towards the boundaries). The simulations are initialized with random conditions for all fields, after455

5The definition of the deformation radius is different here from the QG system discussed in section 2 because 𝐻 now refers to the full tropospheric
height, and we have dropped the

√
2. We will see from the numerical simulations that scaling the length scale like the deformation radius remains a

reasonable choice for the PV anomalies even in the presence of strong latent heating. In the DRV modal theory of Kohl and O’Gorman (2022), the
ascent length scale vanishes as 𝑟 → 0, but the PV anomaly in the descent area is sustained by a balance of growth and zonal advection leading to
an exponential decay length 𝐿𝐷/𝜎 where 𝜎 is the growth rate. But since the growth rate approaches 𝜎 = 1.62 in the limit of 𝑟 → 0, the length
scale of the PV disturbance also remains finite in this limit, at roughly 0.62𝐿𝐷 which is close to 𝐿𝐷 .
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filtering out all wavenumbers with 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 > 3 to avoid having to integrate a lot of small scale456

noise in the initial phase of the simulation. The simulations are run until 𝑡 = 160 and outputted457

every Δ𝑡 = 0.5.458

We run simulations with a high Rossby number 𝜖 = 0.4, an intermediate Rossby number 𝜖 = 0.1,459

and a low Rossby number 𝜖 = 0.01 while keeping the latent heating strong at 𝑟 = 0.01 in all cases.460

For reference, using typical scales 𝑈 = 10m s−1, 𝐿𝐷 = 1000km and 𝑓0 = 10−4s−1, suggesting that461

the intermediate Rossby number 𝜖 = 𝑈/ 𝑓0𝐿𝐷 = 0.1 is closest to typical Earth-like conditions.462

Thus, low and high Rossby number refer to Rossby numbers that are low and high relative to this463

Earth-like value.464

The drag coefficient and momentum hyperdiffusion coefficient need to be smaller in the interme-465

diate and low Rossby regime to avoid over-damping the simulations. Given that the time derivative466

of horizontal momentum is multiplied by 𝜖 in Eq. 25, we held 𝑅/𝜖 and 𝜇𝑢/𝜖 approximately con-467

stant as the Rossby number changes, which in the limit of vanishing Rossby number is consistent468

with QG scaling. For the high Rossby number run, we choose 𝑅 = 0.11 and 𝜇𝑢 = 5×10−5, for the469

intermediate Rossby number run 𝑅 = 2.75×10−2 and 𝜇𝑢 = 1.25×10−5, and the low Rossby number470

run 𝑅 = 2.75×10−3 and 𝜇𝑢 = 1.25×10−6. The hyperdiffusion for temperature is 𝜇𝜃 = 5×10−5 in471

all cases.472

The radiative relaxation coefficient was chosen to be 𝛼 = 0.35 for the high Rossby number473

simulation and 𝛼 = 0.6 for the intermediate and low Rossby number simulations. A higher474

relaxation coefficient was found to be necessary at intermediate and low Rossby numbers in order475

to stabilize the simulations. As we will see in the next section, while the simulations at intermediate476

and low Rossby number transition to DRV world similar to the QG simulations, the simulation at477

high Rossby number does not transition to a DRV world. The need for a stronger relaxation with478

onset of the vortex regime is hence consistent with what was found for the QG simulations in which479

radiative damping was needed for equilibration when a DRV world emerged. We also explored480

primitive-equation simulations in which the background temperature gradient was not imposed but481

rather the temperature was relaxed to a cosinusoidal reference temperature. Thus, the radiative482

forcing is not as strong, and it is easier for the flow to equilibrate. Note that the cosinusoidal483

reference temperature was chosen because relaxation to a linear gradient is not possible in a doubly484

periodic solver. In this case we found that it is possible to run the simulations with the same485
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relaxation coefficient for all Rossby numbers. Transition to DRV world at low Rossby number486

persists and the structure of storms is similar to what we present in the next section. We stick to the487

linear temperature gradient set-up here because its interpretation is simpler, and it makes a closer488

connection to the QG simulations discussed previously in section 2.489

b. Simulation Results490

Fig. 8 shows snapshots of the relative vorticity at a lower level (𝑧 = 0.15) and an upper level497

(𝑧 = 0.85), and the vertical velocity around mid-level (𝑧 = 0.42) in the macroturbulent phase of the498

simulations for the low and high Rossby number simulations.499

In the low Rossby number simulation (Fig. 8a,c,e), the character of the flow is dramatically500

different from that in Earth’s midlatitude atmosphere. The flow field is not wave-like and is501

disrupted by vorticity dipoles, positive in the lower layer and negative in the upper layer of roughly502

equal strength. The vorticity dipoles continuously spawn and rapidly propagate poleward as can503

be most clearly seen in Supplemental Video S3. Similarly, the vertical velocity field breaks up504

into isolated vertical velocity maxima, associated with the vorticity dipoles, and is characterized505

by a large vertical-velocity asymmetry parameter 𝜆 = 0.88. The simulation is clearly a DRV world506

similar to the strong latent heating regime of the moist QG simulations.507

In the high Rossby number simulation (Fig. 8 b,d,f), by contrast, the vorticity in the upper508

troposphere is more wave-like and larger in scale. In the lower-troposphere, there are still smaller-509

scale vortices but these are now associated with prominent frontal bands. The vorticity field is510

stronger in the lower troposphere compared to the upper troposphere. The storms evolve more511

slowly, and while they still drift poleward, their primary propagation is eastward, as can be seen512

in Supplemental Video S4. The vertical velocity field is made up of frontal bands and localized513

maxima, resembling the midlatitude vertical velocity field in Earth’s atmosphere. The vertical514

velocity asymmetry parameter is 𝜆 = 0.75 which is similar to what was found in the reduced515

stability GCM simulations of O’Gorman et al. (2018) at 𝑟 = 0.01. The flow does not show signs of516

transition to a purely vortex dominated regime despite the strong latent heating.517

In the intermediate Rossby number simulation (Supplemental Video 5), the flow is vortex518

dominated, and we consider it to be still a DRV world. A stream of vortices that continously519

spawn and quickly propagate poleward can be clearly seen. However, the flow also retains some520
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Fig. 8. Snapshots of the relative vorticity at a lower (𝑧 = 0.15) and upper level (𝑧 = 0.85) and vertical velocity

(𝑧 = 0.42) around mid-level for (a,c,e) a low Rossby number simulation (𝜖 = 0.01), and (b,d,f) a high Rossby

number simulation (𝜖 = 0.4) run in the moist primitive equation simulations at 𝑟 = 0.01. At low Rossby number,

the flow is a DRV world with vorticity dipoles that propagate poleward. At high Rossby number, the poleward

propagation is slower and the flow has both vortices and fronts. Animations of the two simulations can be found

in Supplemental Videos S3 and S4. Note that different panels use different colorbar ranges.
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frontal features that were observed in the high Rossby number simulation. We conclude that the521

transition to a DRV world with decreasing Rossby number is gradual rather than abrupt.522

Next we turn to the PV structure of the storms for the high and low Rossby number simulations.523

We calculate the Ertel PV524

𝑄 = (1+ 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (30)

where 𝜁 = 𝑣𝑥 −𝑢𝑦 and 𝜃𝑧 = 1+ 𝜖𝜃′𝑧, and subtract the zonal mean to define the PV anomalies. We525

also calculate the PV tendency from latent heating526

¤𝑄LH = 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧, (31)

where ¤𝜃 = [(1− 𝑟 (𝑤))𝑤𝜃𝑧], and we have ignored contributions due to horizontal gradients of the527

heating profile. Equations 30 and 31 are derived in Appendix C. We then composite PV anomalies528

and PV tendencies over the 10 strongest vertical velocity maxima at each simulation output between529

𝑡 = 70−160 when the simulations are in statistical equilibrium. The results are shown in Figure 9530

a,b,c for the low, intermediate and high Rossby number simulations.531

While the low Rossby number storms show a clear dipole structure both in terms of PV anomaly540

and PV tendency (Fig. 9a), the high Rossby number storms are made up of a strong low level541

positive PV anomaly only (Fig. 9c). No strong negative PV anomaly is visible at the location of542

negative diabatic PV generation, although a weaker positive and negative PV anomaly signal is543

visible at the top boundary. Negative diabatic generation is weaker compared to positive diabatic544

generation. For the intermediate Rossby number regime, a clear negative PV anomaly is visible at545

the location of negative diabatic generation (Fig. 9b). Unlike in the low Rossby number case, at546

intermediate Rossby numbers the negative PV anomaly aloft is weaker compared to the low level547

positive anomaly. While diabatic generation extends over the entire vertical extent of the domain548

at low and intermediate Rossby number, diabatic generation remains mostly confined to the lower549

part of the domain at high Rossby number. Overall, Fig. 9a-c shows the weakening of upper level550

PV anomaly and diabatic generation as the Rossby number is increased.551

If vertical PV advection −𝜖𝑤𝑄𝑧 is added to the PV tendency from latent heating (cf. Appendix552

C for derivation), the negative PV generation in the high Rossby number composite at 𝑧 = 0.5 is553
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Fig. 9. Storm composite of Ertel PV anomaly (shading) and PV tendency from latent heating (contours)

for (a) the low Rossby number simulation (𝜖 = 0.01),(b) the intermediate Rossby number simulation (𝜖 = 0.1)

and (c) the high Rossby number simulation (𝜖 = 0.4). The contour interval is (a,d) 0.1, (b,e) 0.5 and (c,f) 2.1.

The zero contour line for the PV tendencies is not shown. Panels (d,e,f) show the same storm composites for

the low, intermediate, and high Rossby number simulation as in (a,b,c) but now the PV tendency includes the

contributions from latent heating plus vertical advection. Composite means were made over the 10 strongest

vertical velocity maxima at each output time between 𝑡 = 70−160. Note the different color bar ranges for different

Rossby numbers.
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almost entirely canceled, with a weaker signal persisting at the upper boundary (Fig. 9f). By554

contrast, negative generation persists for the low and intermediate Rossby number storms (Fig.555

9d,e).556

The PV structure of the low Rossby number storm resembles that of the small-amplitude DRV557

mode from theory (Fig. 3 in Kohl and O’Gorman 2022), while the PV structure of the high Rossby558

number storm resemble that of DRVs from reanalysis in the current climate (Fig. 10 in Kohl and559

O’Gorman 2022). The Rossby number is low for small-amplitude modes and high for storms in560

reanalysis, and hence the similarity between the low Rossby numbers storms and DRV modes, and561

between the high Rossby number storms and DRV storms in reanalysis is as expected.562
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c. Discussion563

The primitive-equation simulations with strong latent heating show that changes in the Rossby564

number bring about important changes both in terms of the PV structure of individual storms and565

in terms of the overall circulation. In particular, low Rossby numbers make the simulations more566

like DRV world in which diabatically maintained PV dipoles continuously spawn and propagate567

poleward. At higher Rossby number, DRVs still occur but they have a different PV structure, they568

do not propagate as quickly poleward and they do not fully dominate the flow which now also569

includes frontal features.570

We note that for the high Rossby number storms (Fig. 9c), a weak positive PV anomaly at571

upper levels is visible westward of the strong low level positive PV anomaly, unlike in the low572

and intermediate Rossby number storms. This upper-level positive PV anomaly suggests that at573

high Rossby number there may be some growth induced from a type-C cyclogenesis mechanism574

as found in Ahmadi-Givi et al. (2004). We leave exploration of this to future work.575

4. Toy Model for the Vertical Structure of PV in Finite Amplitude DRVs576

We study a 1-D toy model for the vertical structure of PV in the ascent region of a DRV in order577

to understand why the PV structure is different at high versus low Rossby number. This model578

will also help to bridge the gap between the theory of DRV modes and finite-amplitude storms,579

although we emphasize that it is not a full model because the vertical velocity profile 𝑤 will be580

taken as given. This approach is similar to previous studies of the PV evolution given prescribed581

vertical velocity or heating profiles (Schubert and Alworth 1987; Abbott and O’Gorman 2024).582

The model equations are the thermodynamic equation with reduced stability parameterization of583

latent heating and the PV evolution equation:584

𝜕𝑡𝜃
′+𝑤𝜃𝑧 + 𝜖𝑤𝜃′𝑧 = ¤𝜃, (32)

𝜕𝑡𝑄 = 𝜖
𝑄 ¤𝜃𝑧

𝜃𝑧 + 𝜖𝜃𝑧
− 𝜖𝑤𝑄𝑧, (33)

where 𝜃𝑧 represents a background stratification that is assumed constant in time, and ¤𝜃 = (1−585

𝑟)𝑤𝜃𝑧 + 𝜖 (1− 𝑟)𝑤𝜃′𝑧 is the latent heating rate. We focus on a single vertical column (0 ≤ 𝑧 ≤ 1)586

in a region of maximum heating in the horizontal such that ¤𝜃𝑥 = ¤𝜃𝑦 = 0, approximate the PV as587
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𝑄 = (1+𝜖𝜁)𝜃𝑧, which ignores the terms 𝜖2𝑣𝑧𝜃𝑥 and 𝜖2𝑢𝑧𝜃𝑦, and ignore any horizontal PV transport.588

A derivation is given in Appendix D. The toy model is evolved forward in time for a high (𝜖 = 0.4),589

intermediate (𝜖 = 0.1) and low Rossby number (𝜖 = 0.01) with the aim of matching the storms590

found in the moist primitive equation simulations (Fig. 9). The integration is started from the591

initial conditions 𝜃′ = 0 and 𝑄 = 𝜃𝑧. For the low and intermediate Rossby numbers, we choose592

a constant background stratification 𝜃𝑧 = 1 to match what was found in the primitive-equation593

simulations at those Rossby numbers. For the high Rossby number regime, we also consider594

a bottom-heavy stratification 𝜃𝑧 = 1 + 0.25𝑒(−(𝑧−0.2)/0.1) in addition to the constant stratification595

case, since a bottom-heavy stratification is what was found for the storms in the high Rossby596

number regime (not shown). The bottom-heavy stratification results from vertical eddy heat fluxes597

which are larger at high Rossby number, and it leads to bottom-amplified heating rates, per the598

𝑟 parameterization of latent heating. The vertical velocity profile is fixed in time as 𝑤 = sin(𝜋𝑧)599

which is symmetric about 𝑧 = 0.5. A vertically constant profile is again chosen for 𝑟 with a value600

of 𝑟 = 0.01, but we note that vertical variations in 𝑟 can matter in the atmosphere particularly in601

colder climates.602

The equations are evolved forward in time until 𝑡 = 1.2, which corresponds roughly to 𝑡 =608

1.2𝐿𝐷/𝑈 = 33h using typical scales 𝐿𝐷 = 1000km and 𝑈 = 10m s−1. The resulting PV anomaly609

profiles are shown in Fig. 10 where we have defined PV anomalies with respect to the initial PV610

profile.611

We focus first on the low Rossby number case (Fig. 10a). The PV profile has the typical dipole612

structure seen in the moist QG storms (Fig. 2), low-Rossby number storms of the moist primitive613

equation simulations (Fig. 9a), and the DRV modes from theory (Kohl and O’Gorman 2022). The614

PV is antisymmetric about the altitude of maximum ascent 𝑧 = 0.5. By contrast, the intermediate615

Rossby number case which also has a constant background stratification has stronger positive than616

negative PV anomalies (Fig. 10b) and its structure bears close resemblance to the storms found in617

the moist primitive equation simulations at intermediate Rossby number (Fig. 9b). The different618

magnitude of positive and negative PV anomalies arises because of the appearance of the PV in619

the diabatic generation term – the first term on the right-hand side of Eq. (33) – which amplifies620

the generation of positive PV anomalies but weakens the generation of negative PV anomalies,621

leading to a nonlinear feedback as the PV anomalies evolve. For the low Rossby number case (Fig.622
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Fig. 10. PV anomaly profiles produced by the toy-model Eqs. (32-33) at 𝑡 = 0.5 using a value of 𝑟 = 0.01 for

(a) a low Rossby number storm of 𝜖 = 0.01, (b) an intermediate Rossby number storm of 𝜖 = 0.1, and (c,d) a

high Rossby number storm of 𝜖 = 0.4. For panels (a-c) we use a constant background stratification, and for panel

(d) we use a bottom-heavy stratification. The PV anomalies are defined with respect to the initial conditions.

Negative anomalies are shown in blue and positive anomalies in red.
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10a), this feedback is negligible because the PV anomalies are too weak to strongly affect the PV623

and thus too weak to affect the diabatic PV production, but for the intermediate Rossby number624

case (Fig. 10b) the feedback is important because the PV anomalies are larger. We also note that625

for the intermediate Rossby number case, vertical advection – the second term on the right-hand626

side of Eq. (33) – has begun to move the positive PV anomaly upwards so that the change from627

positive to negative PV anomaly no longer occurs at about 𝑧 = 0.5 but instead at 𝑧 = 0.56. If628

the time integration is continued, the positive PV anomaly would keep being advected vertically629
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and gradually begin to fill up the entire vertical column until no negative PV anomaly is left (not630

shown). This limit is spurious however, since the assumption of a sustained vertical velocity profile631

would break down.632

Looking at the high Rossby number case with constant stratification (Fig. 10c), we notice that the633

positive PV anomaly has grown even larger than for the intermediate Rossby number case. The PV634

structure is highly asymmetric in magnitude between positive and negative PV anomalies with the635

surface PV anomaly about 4.5 times stronger than the negative PV anomaly aloft. This is because636

the positive PV generation is larger at high Rossby number. When the calculation is repeated using637

a bottom heavy stratification (Fig. 10d), as was found for the high Rossby number storms in the638

simulation, the asymmetry between positive and negative PV values is even more pronounced, with639

surface anomalies 12 times stronger than PV anomalies aloft. This is because the bottom heavy640

stratification implies a bottom heavy heating rate. The vertical gradient of the heating rate, which641

affect the diabatic PV generation, is larger below the heating maximum, leading to stronger positive642

generation, and weaker above the heating maximum, leading to weaker negative PV generation.643

This signal then gets amplified by the nonlinear feedback between PV and the heating gradient644

leading to highly asymmetric bottom heavy storms as were found in the high Rossby number moist645

primitive equation simulations (Fig. 9c).646

Due to the nonlinearity of the feedback between PV anomalies and diabatic PV generation, the647

strength of the low-level PV anomaly that is reached at the end of the integration is very sensitive648

to the magnitude of the Rossby number, the bottom-heaviness of the heating rate and the time649

over which the heating acts (here given by the integration time). For the high Rossby number650

storm, doubling of the Rossby number to 𝜖 = 0.8 leads to a surface PV anomaly that is about 5651

times larger (not shown). This sensitive dependence of the PV asymmetry on the Rossby number652

and the bottom-heaviness of the heating profile explains the differences found between the PV653

structure of the winter and summer DRV example discussed in Kohl and O’Gorman (2022). In654

that case, the winter storm was found to be more asymmetric in terms of the magnitude of positive655

versus negative PV anomalies (no clear negative PV identifiable) because it was a stronger storm,656

implying a higher Rossby number, with a more bottom-heavy diabatic heating profile.657
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5. Conclusions658

Finite amplitude effects in DRVs were explored in simulations of moist macroturbulence using659

the QG and primitive equations, and an attempt was made at synthesis in the form of a toy model660

of the vertical structure of PV.661

Moist QG simulations with a reduced stability parametrization transition from a state of wavy jets662

interspersed with vortices to a vortex dominated state (DRV world) as latent heating is increased.663

PV budget analysis revealed that the vortices in the strong latent heating regime are DRVs with664

diabatic generation dominating over meridional PV advection. The solutions are maintained by665

a balance between mean zonal advection, nonlinear advection and diabatic generation. This is666

very similar to the balances maintaining the small-amplitude DRV mode from theory, with the667

additional effect of nonlinear advection which leads to poleward self advection. DRV world begins668

to emerge at about 𝑟 = 0.4, which is similar to the condition of 𝑟 < 0.38 for DRV modes to exist on669

an infinite domain (Kohl and O’Gorman 2024). One piece of evidence that DRV world is starting to670

emerge near 𝑟 = 0.4 is that simulations run without radiative damping fail to equilibrate for 𝑟 ≲ 0.4671

due to explosive growth of a single vortex in the domain. We also quantified the transition to DRV672

world using a moist growth-rate metric that measures collocation of PV anomalies with diabatic673

PV generation of the same sign, and this showed a rapid pickup near 𝑟 = 0.4. It would be interesting674

to generalize and test this metric for storms in more realistic simulations and observations in future675

work.676

Multilevel simulations of the moist primitive equations in a doubly periodic configuration were677

run for low, intermediate (closest to Earth-like conditions) and high Rossby number regimes while678

keeping latent heating strong. The simulations show that changes in the Rossby number cause679

important changes in the overall macroturbulent flow and the PV structure of strong diabatic680

storms. At low Rossby number the zonal flow becomes disrupted by isolated vorticity dipoles681

which continously spawned and self-advected poleward. The vertical velocity field breaks up682

into isolated maxima with a strong asymmetry between upward and downward motion. At high683

Rossby number the flow maintains a wave-like structure in the upper troposphere, and there are684

a mix of DRV-like storms and frontal features such that there is not a pure DRV world. The685

storms primarily propagate eastward although still with some weaker poleward propagation. In the686

intermediate Rossby number regime, rapidly poleward propagating vortices emerged as in the low687
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Rossby number regime. However, the flow also retained some frontal features that were observed688

in the high Rossby number regime. We conclude from this that the transition to DRV world with689

decreasing Rossby number appears to be gradual rather than abrupt. While the PV structure of690

strong diabatic storms in the low and intermediate Rossby number simulations resembles that of691

the QG DRV storms and DRV modes, the PV structure of storms in the high Rossby number692

simulations are more asymmetric and bottom confined and resembled that of DRVs observed in693

the current climate. We conclude that higher order terms in the PV dynamics beyond QG play an694

important role in setting the structure of storms, their propagation, and the extent to which the flow695

is dominated by DRVs.696

Finite amplitude effects beyond the small-amplitude QG DRV theory were further explored697

within a simple toy model of the moist thermodynamic and PV equations in a single ascending698

column. The toy model was solved for a low, intermediate and a high Rossby number and found to699

reproduce much of the variety of storm structure found in the moist primitive equation simulations.700

For low Rossby numbers the diabatic PV tendency behaves like the vertical gradient of the latent701

heating profile (cf. Eq. 31). If the profile is symmetric this will lead to generation of positive and702

negative PV anomalies of equal magnitude, as was found for DRV storms in QG simulations and703

primitive equation simulations at small Rossby number. When the Rossby number is increased,704

the PV tendency is proportional to the product of the absolute vorticity and the heating rate -705

which amplifies the generation of positive PV anomalies but weakens the generation of negative706

PV anomalies, leading to a nonlinear feedback as the PV anomalies evolve. This leads to the low707

level positive PV anomaly being stronger than the negative PV anomaly aloft as was found in moist708

primitive equation simulations at intermediate and high Rossby numbers. In particular, it was found709

that when a strong Rossby number is coupled with a bottom heavy heating profile, which favors710

larger values of positive PV generation, this can lead to a feedback which rapidly generates strong711

low level PV anomalies with much smaller upper level negative anomaly - as is often found for712

DRVs observed in the current climate (e.g. Wernli et al. 2002, Kohl and O’Gorman 2022). Strong713

sensitivity of the asymmetry of the magnitude of negative versus positive PV anomalies was found714

to the degree of bottom heaviness of the heating rate and the magnitude of the Rossby number.715

Future work could investigate this sensitive dependence by looking at a variety of realistic storm716

systems and relating the vertical profile of heating rates to the magnitude of the PV anomalies.717
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Given that a negative PV anomaly is required for diabatic growth and poleward self-advection,718

the results lead us to the following speculation. In the current climate, where heating rates are more719

bottom heavy, diabatic generation leads to the rapid genesis of low level positive PV anomalies.720

The negative PV anomaly is quickly eroded away (or at least does not grow as quickly as the positive721

PV anomaly) limiting diabatic growth and poleward self advection. Meanwhile the diabatically722

generated positive PV anomaly has become sufficiently large in amplitude to be able to undergo723

nonlinear interaction with upper level PV anomalies in a later secondary growth process (Wernli724

et al. 2002).725

The Rossby number in our simulations is given by 𝜖 =𝑈/ 𝑓0𝐿𝐷 =𝑈/𝑁𝐻 where 𝑈/𝐻 should be726

interpreted as the mean-state zonal wind shear (rather than, say, the local wind shear in a storm).727

Hence, smaller Rossby numbers could be achieved by weaker mean zonal shear or stronger static728

stability 𝑁 , both of which could occur at least regionally in a warming midlatitude climate. Future729

work could investigate the extent to which there is a transition to a more vortex dominated flow (or730

even a full DRV world) in GCMs in warm and moist climates when the Rossby number is low, e.g.731

by varying the strength of the midlatitude jet. This would also include the 𝛽 effect which was not732

considered in the primitive equation simulations described here, and it could confirm whether the733

tendency for a more vortex dominated flow to occur at low Rossby number and with strong latent734

heating holds in models with a more realistic representation of moist physics.735
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APPENDIX A742

Comparison of two-layer QG models with and without a prognostic moisture variable743

To make a closer comparison between moist QG models relying on a reduced static stability744

without prognostic moisture following Emanuel et al. (1987) and used in the present paper, and745

moist QG models with prognostic moisture variables following Lapeyre and Held (2004), we746

compare diagnostics focusing on the transition threshold from wave to vortex regime, the barotropic747

and baroclinic energy spectra, and the skewness of the vorticity field. This comparison is not748

exhaustive, and future work comparing the two parametrizations is needed. We compare our749

simulations primarily to the original paper of Lapeyre and Held (2004), as the super criticality750

value chosen is identical, and we also compare to Brown et al. (2023).751

a. Transition Threshold to a Vortex regime752

The key control parameter in our simulations is the static stability reduction parameter 𝑟 which753

is related to the key control parameter 𝜇𝑠𝑎𝑡 in Lapeyre and Held (2004) through the relation754

𝑟 =
1−L

1+𝐶L =
1

𝜇𝑠𝑎𝑡
, (A1)

where we have used Eq. 11 in Lapeyre and Held (2004) which holds for saturated air, and the755

definition of 𝜇𝑠𝑎𝑡 = (1+𝐶L)/(1−L). Here, L is a non dimensional measure of the strength of756

latent heating, and 𝐶 is a non dimensional proportionality constant that determines how much the757

saturation humidity increases with temperature. Increases in latent heating L thus lead to increases758

in 𝜇𝑠𝑎𝑡 and decreases in the static stability reduction parameter 𝑟 .759
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Lapeyre and Held (2004) observed a regime transition towards a vortex dominated flow for760

values of 𝜇𝑠𝑎𝑡 > 2.5 as evidenced by an explosive energy increase in their simulations (see their761

Fig. 2a) and a marked jump in skewness in the vorticity field of the lower layer (see their Fig.762

11b). This would correspond to the parameter regime 𝑟 < 0.4 in our simulations which is exactly763

when a vortex world transition has been observed for our moist model with reduced stability764

parametrization. We note that an explosive energy increase has also been found for our simulations765

below 𝑟 < 0.4 to the point that a radiative damping was required to stabilize the simulations. Such766

a damping was not required in the simulations of Lapeyre and Held (2004), and it is possible that767

this is a consequence of having a conserved moisture variable which limits the energetic input from768

latent heating. We note however that Lapeyre and Held (2004) only ran simulations up to roughly769

𝜇𝑠𝑎𝑡 = 4 (or equivalently down to 𝑟 = 0.25), which is only slightly below the vortex transition770

threshold, whereas simulations down to 𝑟 = 0.01 have been performed in this paper. Given the771

rapid energy increase found by Lapeyre and Held (2004) with 𝜇𝑠𝑎𝑡 (see their Fig. 2a), it is possible772

that simulations with stronger latent heating would also blow up in their model.773

Overall, the main result of this section is that both our simulations with reduced stability774

parametrization and the simulations of Lapeyre and Held (2004) with explicit moisture variable775

agree on the transition point towards a vortex dominated flow: 𝑟 < 0.4 which corresponds to776

𝜇𝑠𝑎𝑡 > 2.5. This is also close to the threshold of 𝑟 < 0.38 for a DRV mode to exist on an infinite777

domain (Kohl and O’Gorman 2022).778

b. Energy Spectra779

Fig. A1 shows the time-averaged barotropic and baroclinic energy spectra for the moist QG780

simulations at 𝑟 = 1 (dry simulation) and 𝑟 = 0.3 (moist simulation in the vortex regime).781

A few key changes in the spectra can be observed going from dry to moist simulations. The785

barotropic and baroclinic energy increases, the peak of the barotropic energy spectrum shifts to786

larger scales, and the baroclinic energy spectrum broadens, such that its centroid shifts to smaller787

scales (not shown). As a result, while the peak of the barotropic and baroclinic energy occur at788

roughly the same wavenumber for the dry simulations, the spectra separate for the moist simulations.789

At large wavenumbers, the spectra of both dry and moist simulations follow a 𝑘−3 power law. These790

results are in good qualitative agreement with the results of Brown et al. (2023) (their Fig. 4). Even791
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Fig. A1. Barotropic (blue) and baroclinic (red) energy spectra for the moist QG simulations with radiative

damping of 𝛼 = 0.15 for a reduction factor 𝑟 = 1 (dry simulation; dashed lines) and 𝑟 = 0.3 (moist simulation in

the vortex regime; solid lines).

782

783

784

though we focus only on a dry simulation and a moist simulation in the vortex regime, we note792

that the changes described before happen gradually as latent heating is increased without abrupt793

transition (not shown).794

In the vortex regime of Lapeyre and Held (2004) at 𝜇𝑠𝑎𝑡 = 3.14 (𝑟 = 0.32), their upper-layer795

and lower-layer energy spectra had no discernible peak and increased all the way to the smallest796

wavenumber with flattening spectral slope (their Fig. 6b), unlike what is found for our barotropic797

energy spectrum which decreases at small wavenumbers (Fig. A1). It is possible that their798

simulations experienced more of an inverse cascade which could explain why their vortices, unlike799

ours, barotropized despite the baroclinic forcing from latent heating.800

c. Cyclone/Anticyclone Asymmetry801

Finally, we plot the skewness of the relative vorticity in the top and bottom layers as a measure of805

the cyclone/anticyclone asymmetry produced by the simulations (Fig. A2). As the reduction factor806

𝑟 is decreased, the relative vorticity in both layers becomes more skewed with a weak preference807

for anticyclones in the top layer and a stronger preference for cyclones in the bottom layer. These808

results are consistent with was found in Lapeyre and Held (2004). However, their simulations809

showed a rather abrupt increase in the skewness of the lower layer vorticity as the vortex regime810

was approached which we do not find in our simulations (see their Fig. 11b). In this regime, their811
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reduction factor 𝑟 . All simulations were run with a radiative damping of 𝛼 = 0.15. Averages were taken between
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802

803

804

skewness in the lower layer is almost an order of magnitude larger than what we find. Further work812

is required to understand these differences, and how they are related to the tendency for vortices to813

barotropize in the simulations Lapeyre and Held (2004) but not in ours.814

APPENDIX B815

Vertical velocity asymmetry in the moist QG simulation816

As discussed in section 2b, the moist QG simulation at 𝑟 = 0.01 has a very high vertical velocity817

asymmetry parameter of 𝜆 = 0.94 as compared to 𝜆 = 0.73 for an idealized GCM simulation at818

𝑟 = 0.01 in O’Gorman et al. (2018). The effective wavenumber of the 𝑤-spectrum, as defined819

in Kohl and O’Gorman (2024), is much larger in the QG simulations compared to the idealized820

GCM simulation (𝑘 = 6.1 vs. 𝑘 = 1.7). Given these 𝑘 values and 𝑟 = 0.01, the toy model for 𝜆821

of Kohl and O’Gorman 2024 predicts a higher value of 𝜆 = 0.84 for the QG simulation compared822

to a prediction of 𝜆 = 0.75 for the GCM simulation. The toy model underestimates 𝜆 in the QG823

simulation even given the high 𝑘 , which is likely a result of the fact the toy model is 1D whereas824

the vertical velocity field in the QG simulation has a more 2D structure (vortices) compared to the825

1D structure (fronts) in the idealized GCM.826
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To investigate further, we expand the toy model of Kohl and O’Gorman 2024 slightly to two827

dimensions by solving828

∇2(𝑟 (𝑤)𝑤) −𝑤 = sin(𝑘𝑥) sin(𝑘𝑦) (B1)

numerically for a given wavenumber k and reduction factor r on a domain of length 𝐿𝑥 = 𝐿𝑦 = 2𝜋/𝑘829

using 300 evenly spaced grid points in each direction. The solution technique follows the method830

outlined in Kohl and O’Gorman 2024. This 2D version of the toy model predicts a value of the831

asymmetry of 𝜆 = 0.92 for the QG simulation at 𝑟 = 0.01 which is in good agreement with the832

simulated value of 𝜆 = 0.94. As discussed in Kohl and O’Gorman 2024, the asymmetry is larger833

for 2D flow features because of the greater contribution from the Laplacian term in that case.834

APPENDIX C835

PV equation for the primitive-equation model836

Eqs. (11-14) can be combined into an equation for the PV 𝑄 (Vallis 2017, his Eq. 4.96)837

𝐷𝑄

𝐷𝑡
= ( 𝑓0 + 𝜁) ¤𝜃𝑧 − 𝑣𝑧 ¤𝜃𝑥 +𝑢𝑧 ¤𝜃𝑦, (C1)

where838

𝑄 = ( 𝑓0 + 𝜁)𝜃𝑧 − 𝑣𝑧𝜃𝑥 +𝑢𝑧𝜃𝑦, (C2)

¤𝜃 = (1− 𝑟)𝑤𝜃𝑧, (C3)

𝜃𝑧 = 𝜃𝑧 + 𝜃′𝑧, (C4)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧, (C5)

𝜃𝑧 is a background stratification, and we have ignored the drag, relaxation and hyperdiffusion839

terms in Eq. (C1). Nondimensionalizing the vertical potential temperature gradients as 𝜃′𝑧 ∼840

𝜃0 𝑓0𝑈𝐿𝐷/𝑔𝐻2, 𝜃𝑧 ∼ 𝜃0𝑁
2/𝑔, the PV like 𝑄 ∼ 𝑓0𝜃𝑧 = 𝑓0𝜃0𝑁

2/𝑔 and the rest of the variables with841

scales as outlined in section (3), we obtain the nondimensional PV equation842
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𝐷𝑄

𝐷𝑡
= 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧 − 𝜖2𝑣𝑧 ¤𝜃𝑥 + 𝜖2𝑢𝑧 ¤𝜃𝑦, (C6)

where843

𝑄 = (1+ 𝜖𝜁)𝜃𝑧 − 𝜖2𝑣𝑧𝜃𝑥 + 𝜖2𝑢𝑧𝜃𝑦, (C7)

¤𝜃 = (1− 𝑟)𝑤𝜃𝑧, (C8)

𝜃𝑧 = 𝜃𝑧 + 𝜖𝜃′𝑧, (C9)
𝐷

𝐷𝑡
= 𝜕𝑡 +𝑢𝜕𝑥 + 𝑣𝜕𝑦 + 𝜖𝑤𝜕𝑧 (C10)

and all variables are now nondimensional. Eq. (C7) corresponds to Eq. (30) used for the PV in844

section (3), where in that section we use a background stratification equal to the reference state845

such that 𝜃𝑧 = 1+ 𝜖𝜃′𝑧. The first term on the rhs of Eq. (C6) corresponds to Eq. (31) used for the846

PV tendency from latent heating in section (3).847

APPENDIX D848

Derivation of the governing equations for the 1-D toy model of vertical PV structure849

If we place ourselves at the location of the heating maximum ¤𝜃𝑥 = ¤𝜃𝑦 = 0, neglect all horizontal850

transport of PV, and neglect the higher order vertical shear terms in the PV, then Eqs. (C6) and851

(C7) simplify to852

𝜕𝑡𝑄 + 𝜖𝑤𝑄𝑧 = 𝜖 (1+ 𝜖𝜁) ¤𝜃𝑧 (D1)

𝑄 = (1+ 𝜖𝜁)𝜃𝑧, (D2)

which we can rewrite as853

𝜕𝑡𝑄 = 𝜖
𝑄 ¤𝜃𝑧

𝜃𝑧 + 𝜖𝜃′𝑧
− 𝜖𝑤𝑄𝑧, (D3)

which is the form of the PV equation (Eq. 33) used in the simple 1D toy-model in section (4).854
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The thermodynamic equation in the simple 1-D toy model (Eq. 32) is derived similarly to855

Eq. (26) but neglecting horizontal advection of perturbation 𝜃′ and reference theta (the 𝑣 term),856

neglecting hyperdiffusion and radiative relaxation, and using 𝜃 in place of 𝜃𝑟 .857
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