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Abstract13

Extreme weather events epitomize high cost: to society through their physical impacts, and to14

computer servers that simulate them to assess risk and advance physical understanding. It costs15

hundreds of simulation years to sample a few once-per-century events with straightforward model16

integration, but that cost can be much reduced with rare event sampling, which nudges ensem-17

bles of simulations to convert moderate events to severe ones, e.g., by steering a cyclone directly18

through a region of interest. With proper statistical accounting, rare event algorithms can pro-19

vide quantitative climate risk assessment at reduced cost. But this can only work if ensemble mem-20

bers diverge fast enough. Sudden, transient events characteristic of Earth’s midlatitude storm track21

regions, such as heavy precipitation and heat extremes, pose a particular challenge because they22

come and go faster than an ensemble can explore the possibilities. Here we extend standard rare23

event algorithms to handle this challenging case in an idealized atmospheric general circulation24

model, achieving ∼ 5−10 times sped-up estimation of long return periods for extremes of sur-25

face temperature and daily precipitation (e.g., return periods of 100-150 years from 20 years of26

simulation). The algorithm, called TEAMS (“trying-early adaptive multilevel splitting”), was de-27

veloped previously using a toy chaotic system, and relies on a key parameter—the advance split28

time—which may be estimated based on simple diagnostics of ensemble dispersion rates. The29

results are promising for accelerated risk assessment across a wide range of physical hazards us-30

ing more realistic and complex models with acute computational constraints.31

Plain Language Summary32

Climate hazards are largely felt not through global mean temperature, but through extreme33

weather events, which are dangerous not only for their physical severity but also for their rarity:34

by definition, they are very difficult to anticipate and prepare for. The same characteristic makes35

risk assessment a very hard statistical problem. Numerical simulations can be used to augment36

small sample sizes, but at great computational cost. Rare event algorithms offer a novel way to37

“steer” simulations towards the extremes to do targeted risk assessment at reduced cost, but this38

can be challenging when the events under study are transient in nature, such as passing rainstorms39

and heat extremes in Earth’s midlatitude region. This paper presents a successful application of40

a rare event algorithm to such transient extremes in an idealized model of Earth’s atmospheric41

circulation, building on previously published results with a simpler toy model of spatial chaos.42

The core of the method is to select the right time to perturb the simulations, and the fact that the43

method generalizes is a promising sign that it can scale to even more complex, realistic models.44
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1 Introduction45

The highest-impact extreme weather events are those that occur so seldom as to catch communities—46

cities, ecologies, and scientists alike—surprised and unprepared (Sillmann et al., 2017). Even47

with physically accurate numerical models capable of simulating extremes, running them long48

enough to collect ample statistics can be prohibitive. A key innovation to close this gap is rare49

event sampling, a protocol which steers ensembles of simulations towards the extremes by re-50

peated perturbation, pruning, and cloning steps, all while keeping track of the bias introduced51

to correct for it in statistical estimation. Originally developed for nuclear physics simulation (Kahn52

& Harris, 1951), rare event algorithms have been specialized and developed for molecular dy-53

namics (Zuckerman & Chong, 2017), reliability engineering (Huang et al., 2016; Sapsis, 2020;54

Uribe et al., 2021; Zhang et al., 2022), and climate science (e.g., Ragone et al., 2018; Wouters55

& Bouchet, 2016; Webber et al., 2019). Rare event algorithms are attractive for being agnostic56

to the model: importantly, they can operate on models grounded in physics and potentially could57

also be applied to faster, data driven models with the alluring possibility of generating abundant58

extreme events at will (Mahesh et al., 2024, 2024).59

Yet there remain some methodological roadblocks to the broad deployment of rare event60

algorithms across different models and different rare events. This paper addresses one such road-61

block: a timescale overlap between the event of interest and the ensemble dispersion which is cru-62

cially necessary to sample different hypothetical versions of the event. There is no such overlap63

for long-lasting, spatially extended events such as hot or rainy seasons—defined by large seasonal64

mean temperature or precipitation amplitudes. Such events are already a successful application65

for rare event algorithms (Ragone et al., 2018; Wouters & Bouchet, 2016), as multiple succes-66

sive rounds of ensemble splitting can fit into a single season and achieve extreme anomalies by67

essentially chaining together a sequence of moderate anomalies. But transient events of much68

shorter duration don’t yield so easily; naïvely applying the same perturbation protocol simply re-69

sults in disappointing replication of the same moderate extreme again and again, without mean-70

ingful exploration into the far tails (Lestang et al., 2020; Rolland, 2022; Finkel & O’Gorman, 2024).71

This is a major limitation given that transient cyclones and antiyclones can bring heavy rain and72

temperature extremes that are among the most impactful extreme events for society.73

We developed a simple remedy to this problem, drawing inspiration from ensemble boost-74

ing (Gessner et al., 2021; Gessner, 2022), namely to perturb simulations in advance of the event.75

Ensemble boosting, as originally formulated, does not assign probabilities but only generates “sto-76
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rylines” (until more recent developments in Bloin-Wibe et al. (2025) and Finkel and O’Gorman77

(2025)), but we augmented boosting with an acceptance/rejection step from reliability engineer-78

ing (Au & Beck, 2001) to retain statistics, and demonstrated this on the Lorenz-96 system in Finkel79

and O’Gorman (2024). Lorenz-96 is relatively simple model of spatiotemporal chaos, but it cap-80

tures the essence of baroclinic waves and has been a helpful benchmark for data assimilation, which81

presents similar challenges as sampling algorithms. The resulting algorithm, TEAMS (“trying-82

early adaptive multilevel splitting”), introduces a key hyperparameter, the advance split time, which83

determines when to split the simulation relative to the event for an optimal balance of exploration84

(with high risk of rejection) and exploitation (with low risk of rejection but limited rewards). Our85

main contribution here is to demonstrate a successful use of TEAMS on an actual climate model,86

albeit an idealized one, to sample short-timescale events, namely high surface temperatures and87

daily precipitation rates.88

This paper is organized as follows. Section 2 briefly specifies the physical model, a gen-89

eral circulation model (GCM) in an aquaplent configuration, emphasizing two modifications of90

reduced resolution for computational efficiency and the addition of stochastic parameterization.91

Section 3 outlines the rare event algorithm TEAMS, emphasizing the most recent modifications92

of how rejection is handled and the halting criteria. Section 4 shows the results of applying TEAMS:93

efficiency gains in calculating long return periods (100 years and longer), and the generation of94

corresponding dynamical samples. Section 5 concludes with a summary and outlook on further95

avenues of development.96

2 The physical model97

We use an idealized GCM based on the GFDL spectral model and similar to that developed98

in Frierson et al. (2006) with slight modifications as in O’Gorman and Schneider (2008). A spec-99

tral dynamical core integrates the primitive equations, with a lower boundary condition consist-100

ing of a slab ocean (aquaplanet) that is shallow, well-mixed, and energy-conserving (not fixed-101

temperature). Insolation is fixed to an average distribution, with no seasonal or diurnal cycle. A102

two-stream gray radiation scheme is used, with a prescribed distribution of longwave optical depth.103

We turn off convection parameterization, so that condensation of water vapor occurs only at the104

large scale (grid box size), as was found to be adequate for midlatitudes by Frierson et al. (2006).105

Turbulent diffusivities are smoothed in time following Anderson et al. (2004).106
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We make two further modifications for this rare event sampling demonstration. To enable107

computational efficiency, we reduced the resolution to T21 in the horizontal, with six 𝜎-levels108

in the vertical (half levels at 𝜎 = 0.0, 0.0343, 0.15, 0.4, 0.7, 0.966, 1.0), and a 40-minute timestep.109

We also present some limited results at a higher horizontal resolution of T42 and 30 vertical lev-110

els. To induce variability between ensemble members, we implemented a stochastic parameter-111

ization scheme known as stochastically perturbed parameterized tendencies (SPPT) that was de-112

veloped in numerical weather prediction to enhance ensemble spread to more likely capture the113

observed evolution (Palmer et al., 2009; Berner et al., 2009, 2015), and which rare event sam-114

pling can use to discover unlikely paths towards extremes. Our implementation of SPPT closely115

follows the specification in Palmer et al. (2009), which contains further details and background.116

In brief, SPPT modifies the total parameterized tendencies of horizontal winds, humidity, and117

temperature by a multiplicative factor of 1+𝑟SPPT(𝑥, 𝑦, 𝑧, 𝑡) at every timestep, where 𝑟SPPT(𝑥, 𝑦, 𝑧, 𝑡)118

is a random spatiotemporal pattern whose spherical harmonic modes each evolve as an indepen-119

dent red noise process. The total parameterized tendencies include contributions from large-scale120

condensation, vertical turbulent diffusion, and radiation. Key tunable parameters are the noise121

amplitude 𝜎SPPT and the characteristic length and time scales 𝐿SPPT and 𝜏SPPT. To prevent un-122

realistically large fluctuations, 𝑟SPPT is clipped to the range (−2𝜎SPPT, 2𝜎SPPT) at every timestep.123

Sensitivity analysis led us to select 𝜎SPPT = 0.3, 𝐿SPPT = 500 km, and 𝜏SPPT = 6 hours for124

this study, quite similar to the moderate-amplitude experiments in Palmer et al. (2009).125

We use this computationally efficient GCM because it accommodates the large ensemble126

sizes and parameter tuning experiments needed for development and testing of rare-event sam-127

pling strategies. Our aim is to demonstrate a novel methodology more than a particular scien-128

tific conclusion, and for this purpose a lower rung on the model hierarchy (Held, 2005) take on129

greater value. The same idealizations (such as zonally symmetric boundary conditions) that make130

this model attractive for extensive parameter sweeps, as in O’Gorman and Schneider (2008) and131

O’Gorman and Schneider (2009), also make it well-suited for rare event algorithm development.132

At the same time, even the coarse model is physically realistic enough that the insights learned133

here should transfer to more realistic models.134

Fig. 1 displays some characteristics of the surface temperature and precipitation fields pro-135

duced by the GCM once it reaches statistical equilibrium after a spinup period. Throughout the136

paper, surface temperature refers to the surface air temperature evaluated at the lowest model level.137

Outputs from the GCM are six-hourly; temperature is instantaneous (noting there is no diurnal138

cycle) and precipitation is averaged over the previous day. Despite the idealized setup and coarse139
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resolution, the baroclinic waves of Earth’s midlatitude storm track and associated precipitation140

and temperature variability are clearly visible in the model fields (Fig. 1a,b), which grow and de-141

cay over synoptic ∼ 5-day timescales (indicated by the Hovmöller diagrams in Fig. 1c,d). Our142

aim is to characterize—using rare event sampling—the extreme, local fluctuations in these fields143

at the storm track’s center. We therefore fix a target latitude of 45◦N and a target longitude of 180◦E,144

taking the field value in a single grid cell (∼ 6◦) as the target variable. The choice of longitude145

is arbitrary due to the model’s zonal homogeneity, but fixing a longitude simplifies the event def-146

inition and would be necessary anyway in Earth system models with zonal asymmetries. Still,147

we take advantage of zonal homogeneity in computing “ground truth” statistics from long sim-148

ulation by pooling together eleven longitudinal rotations in 30◦ increments for more stable es-149

timation with twelve times the data. Fig. 1(e,f) displays the long-term climate statistics of pre-150

cipitation and temperature at the target location, revealing 𝜎SPPT ≈ 0.3 to be near the upper limit151

of noise level that still avoids disrupting the deterministic model’s statistics too severely. These152

results are based on a long run of 36,500 days (100 years, or 1200 years including longitudinal153

rotation) after spinup, which we refer to as a direct numerical simulation (DNS) and which will154

be used for validation. The data used for initializing TEAMS, on the other hand, is branched from155

the long DNS after spinup and integrated independently, with a different seed for each run of TEAMS,156

in order to avoid data leakage (see “ancestor initialization” in the algorithm described in section157

3).158

3 The TEAMS algorithm159

Let us briefly describe the TEAMS algorithm, following Finkel and O’Gorman (2024). Along160

the way we delineate between generic parameter choices and those made in this study to target161

local temperature and precipitation extremes in the GCM. Readers interested primarily in the sam-162

pling results can skip to Section 4.163

1. Ancestor initialization: Sample 𝑁 initial conditions {𝑋1(0), 𝑋2(0), ..., 𝑋𝑁 (0)} from the164

distribution of interest, denoted 𝜌0. For us, 𝜌0 is the distribution at statistical steady state,165

i.e., the limiting distribution of a very long GCM simulation. Other applications might166

restrict the initial conditions to specific phases of oscillation (e.g., neutral El Niño con-167

ditions) or, if a seasonal cycle is present, specific dates (e.g., June 1 conditions). For our168

study, we can extract the 𝑋𝑛(0)′𝑠 as snapshots from a direct numerical simulation (DNS),169

which is branched from the DNS used for validation by changing the random seed for SPPT170

after spinup. Consecutive ancestral initial conditions are separated by a gap of 𝑇 = 60171
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(a) (b)

(e) (f)

(c) (d)

Figure 1. Simulated precipitation and surface temperature fields and their return levels. After a spin-up of

500 days, the aquaplanet GCM produces physically plausible large-scale storm track dynamics: a sequence of

extratropical cyclones and anticyclones bringing packets of precipitation (a) and temperature fluctuations (b),

propagating eastward with lifetimes of ∼ 5 days (Hovmöller diagrams in c and d). We select a target region

(one grid cell marked by a black square in (a,b)) to fall at 45◦N, near the latitude of maximum mean precip-

itation, and a longitude of 180◦E (which is arbitrary because climatological statistics are zonally uniform).

Horizontal and vertical dashed lines in (c,d) indicate the timing of the snapshot and the target longitude. Pan-

els e,f show return level vs. return period plots of both targets, local precipitation and temperature, for a range

of values of the SPPT forcing strength 𝜎SPPT. The return levels vary only moderately for 𝜎SPPT ≲ 0.3 and start

deviating substantially for larger values, which is why we adhere to 𝜎SPPT = 0.3 in panels (a-d) and hereafter.
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days; in other words, 𝑋𝑖(0) = 𝑋DNS(𝑖𝑇 ), where the clock for 𝑋DNS starts after spinup172

and the timestamps are all reset to zero for notational convenience, utilizing the model’s173

autonomous dynamics. The gap helps each successive ancestor lose the memory of the174

previous one and become more independent, which tends to make the results more sta-175

ble, i.e. lower-variance, even though the ancestors need not be strictly independent (only176

identically distributed). Section 4.3 will demonstrate 𝑇 = 60 days is long enough for177

independence.178

2. Ancestor simulation: Run the dynamics forward for a time horizon 𝑇 from each ances-

tral initial condition, creating the ancestral trajectories {𝑋𝑛(𝑡) ∶ 1 ≤ 𝑛 ≤ 𝑁, 0 ≤

𝑡 ≤ 𝑇 }. For us, this just means extracting segments of the branched-off DNS, and we

use the same 𝑇 = 60 days here as the time gap between ancestors. Assign each ances-

tor a probability weight 𝑊𝑛 = 1. Furthermore, initialize a set of active members

 = {1,… , 𝑁} =∶ {𝑎1,… , 𝑎𝐴} (1)

with a size 𝐴 = 𝑁 , which will be modified by repeated culling and replenishment in fol-179

lowing steps. Also initialize an empty list of severity levels  = [], which will grow in180

the following steps.181

3. Culling: Rank the active ensemble members 𝑎 ∈  by their severity, 𝑆𝑎 = 𝑆(𝑋𝑎) de-182

fined as the peak value over time of the intensity 𝑅𝑎(𝑡) = 𝑅(𝑋𝑎(𝑡)) which defines the tar-183

get variable of interest. In our case, our outputs are six-hourly and 𝑅(𝑋𝑎(𝑡)) is the precip-184

itation (averaged over the preceding day) or surface temperature (measured at a single six-185

hourly snapshot) at the target grid box indicated in Fig. 1. Choose a number 𝐾 < 𝐴 and186

cull the the 𝐾 least-extreme active members. We choose 𝐾 = 1
2𝑁 , but one could also187

set 𝐾 as a constant number (commonly 𝐾 = 1, as in Finkel and O’Gorman (2024)) or188

some other fixed fraction of 𝑁 (in engineering applications, the related “subset simula-189

tion” algorithm commonly culls aggressively with 𝐾 ∼ 0.9𝑁 (Au & Beck, 2001)). At190

this point, by design, the 𝐾-th smallest severity 𝑠 has an estimated exceedance probabil-191

ity of (𝑁 − 𝐾)∕𝑁 (for us, 1∕2). Append the list of severity levels,  ←  ∪ [𝑠]. Re-192

move the culled members from the active set, reducing its size to 𝐴−𝐾 , re-index its mem-193

bers accordingly to  = {𝑎1,… , 𝑎𝐴−𝐾}, and reset the size 𝐴 to 𝐴 −𝐾 .194

4. Cloning: Shuffle the active members in a random order, called the “parent queue”. For195

the first parent 𝑎 in the queue identify the earliest timestep (in six-hourly outputs) that 𝑅𝑎(𝑡) >196

𝑠 and call this time 𝑡𝑠𝑎 At an earlier time 𝑡𝑠𝑎−𝛿, spawn a new “child” 𝑋 which shares its197

parent’s history up until 𝑡𝑠𝑚−𝛿, but then gets perturbed by use of a new seed for random198
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number generation in the stochastic parameterization scheme—and thereafter diverges from199

its parent. 𝛿 is the key advance split time parameter, which we vary systematically in this200

study from 0 to 20 days. The next step depends on whether the child’s severity exceeds201

𝑠:202

(a) If the child’s severity exceeds 𝑠, we call this “success” and officially admit the child into203

the active population: 𝑋𝑎𝐴+1 = 𝑋, with the same probability weight as its parent. To204

maintain a constant total probability weight in the active population, adjust all active205

weights by the same factor: 𝑊𝑎 ← 𝐴
𝐴+1𝑊𝑎 for all 𝑎 ∈ . Finally, increment 𝐴 to206

𝐴 + 1.207

(b) Otherwise, in case the child’s severity fails to exceed 𝑠 (which might happen, because208

the split happens before the parent’s first threshold crossing; see Fig. 1 in Finkel and209

O’Gorman (2024)), discard the child completely (formally, set its weight to zero) and210

move to the next parent in the queue to clone it in the same way.211

Keep cycling through the queue until either the active set is fully replenished to a size 𝐴 =212

𝑁 (the original population size) with 𝐾 new successful children, or the total number 𝑀213

of simulations (including ancestors, discarded members, and inactive members) exhausts214

a pre-determined computational budget, 𝑀 = 𝑀max. For our main experiments, we set215

𝑀max = 150.216

5. Iteration: Repeatedly perform step 3 starting with the active population, resulting in a higher217

level 𝑠, followed by step 4 on the sub-ensemble exceeding 𝑠.218

6. Termination: halt the algorithm once the number of severity levels in  exceeds a pre-set219

number (in our case, 20), or the total number 𝑀 of simulations reaches the aforementioned220

budget 𝑀max.221

7. Post-analysis: For any observable of interest expressible as 𝐹 (𝑋), where 𝑋 denotes a ran-

dom variable comprising a whole trajectory {𝑋(𝑡) ∶ 0 < 𝑡 ≤ 𝑇 } with 𝑋(0) drawn

from 𝜌0, and 𝐹 is a generic functional, estimate its expectation as

𝐹 =
∑𝑀

𝑚=1𝑊𝑚𝐹 (𝑋𝑚)
∑𝑀

𝑚=1𝑊𝑚
. (2)

The denominator is always equal to 𝑁 . In particular, for any given severity 𝑠, an estimate

ℙ̂{𝑆 > 𝑠} for its exceedance probability is found by defining 𝐹 (𝑋) ∶= 𝕀{𝑆(𝑋) > 𝑠}

in the formula above, where 𝕀 is the indicator function (one if its argument is true, zero

otherwise). The corresponding return period 𝜏(𝑠)—the average time between consecu-

tive exceedances, using a Poisson process statistical model—is estimated following Lestang
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et al. (2018) as

𝜏(𝑠) = − 𝑇
log[1 − ℙ̂{𝑆 > 𝑠}]

, (3)

where 𝑇 is the time horizon.222

This version of TEAMS mostly follows the version in Finkel and O’Gorman (2024), but differs223

in two substantial ways. First, in step 4, the previous version of TEAMS would allow parents to224

stand in for their failed children, and raise the level after 𝐾 cloning attempts even if they all fail,225

whereas the new version refuses to raise the level before children alone repopulate the ensem-226

ble. Heuristically, the new version is more like mastery-based learning (Winget & Persky, 2022),227

wherein students only advance after demonstrating mastery even if it takes a longer time with re-228

medial coursework. Even if the levels don’t advance as high this way, it ensures that the levels229

reached are more thoroughly sampled and avoids overextending an “aging” ensemble beyond its230

means. Of course, this risks stagnation at a single level that is impossible to overcome. To cut231

our losses, we impose a lean budget of 𝑀max = 150 as the second major difference from Finkel232

and O’Gorman (2024), where the budget was 1024 and in practice was rarely reached because233

of a second “diversity” criterion that is not used here. We have found this version to give more234

reliable speedup at shorter return periods with reasonable costs, and to reduce the chance of un-235

derestimating return values in a given TEAMS run (“apparent bias”), which was critical for ex-236

tending this algorithm from a toy model (Lorenz-96) to a GCM.237

In the sense of repeatedly spawning descendants until success (or computational budget238

overrun), our new version resembles “anticipated AMS” (Rolland, 2022). However, in another239

important sense, anticipated AMS still differs by splitting ancestors when 𝑅𝑎(𝑡) crosses a lower240

threshold than 𝑠, rather than at a fixed advance split time. This would not work on precipitation,241

which rises from zero to peak values more rapidly than ensemble members can diverge; hence,242

the TEAMS strategy of splitting a fixed time in advance.243

The advance split time (AST), 𝛿, is a crucial hyperparameter underlying TEAMS which244

must be chosen in a cheap and reliable way in order to scale TEAMS successfully to realistic GCMs.245

In section 4.3, we estimate the proposed AST from Finkel and O’Gorman (2024), namely the time246

until a perturbed ensemble disperses to a fraction 3∕8 of its saturation dispersion, using a branch-247

ing procedure. But first, we will present results from TEAMS across a range of ASTs to demon-248

strate its ability to sample extreme events in the GCM.249

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

4 Results250

4.1 TEAMS performance251

We ran TEAMS with a range of advance split times 𝛿 ∈ {0, 4, 6, 8, 10, 12, 14, 16, 20,252

24} days. Fig. 2 displays the resulting estimates of return level vs. return period for both targets253

of local precipitation (left), with 𝛿 = 10 days, and temperature (right), with 𝛿 = 12 days, which254

are selected as optimal values based on sensitivity analysis to be presented in Sec. 4.2. The main255

sequence of experiments used T21 resolution and 𝑁 = 16 ancestors, but as a test of the robust-256

ness of 𝛿, we performed two “pivot” experiments about the optimal values: doubling the ances-257

tor pool to 𝑁 = 32, and doubling horizontal resolution to T42 with 30 vertical levels and a time258

step of 600s.259

Our overall assessment of TEAMS is that it speeds up estimation of extreme events rela-260

tive to DNS by factors of 5-10. Since GCMs are far more expensive than toy models like Lorenz-261

96, here we focus on the performance of individual runs of TEAMS instead of pooled estima-262

tion across many such runs as we did in Finkel and O’Gorman (2024). In Fig. 2, the median re-263

turn level across TEAMS runs (purple line) is generally very close to the DNS ground truth (black264

dashed line), indicating that the overall bias is not large. The red bands in Fig. 2 assess reliabil-265

ity by how close to the ground truth one can expect a single TEAMS run to land with 50% prob-266

ability. Comparing red to gray error bars—the latter coming from DNS, computed with a bud-267

get equal to a single TEAMS run—we see a tradeoff between the bulk and the tail. For the de-268

fault case of 𝑁 = 16 (Fig.2c,d), one run of TEAMS is equivalent to ∼ 19 years of DNS in com-269

putational cost. TEAMS is less certain in return periods < 19 years than DNS, but provides a270

good estimate for the range ∼ (19 − 100) years (for precipitation) and ∼ (19 − 150) years (for271

temperature), which a 19-year DNS simply cannot estimate. We take the upper range of relia-272

bility to be where the error bar starts behaving erratically due to fewer TEAMS runs splitting that273

many times. TEAMS performs similarly on precipitation and temperature, even though the tails274

are shaped quite differently: from extreme value theory, precipitation shape parameters often take275

both positive and negative signs, indicating unbounded or bounded tails (Ragulina & Reitan, 2017),276

whereas temperature shape parameters tend to be negative (Krakauer, 2024).277

Doubling the ancestor pool from 𝑁 = 16 to 32 (Fig. 2a,b) noticeably improves TEAMS’278

reliability, narrowing the error bars and giving a larger increase in the longest return period. In279

this case, one TEAMS run is equivalent to just under 40 years of DNS. We find that one run of280

TEAMS is less certain than DNS for return periods less than 40 years, but provides a good es-281
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timate for return periods from 40-300 years (for precipitation) and 40-500 years (for temperature),282

which a 40 year DNS could not estimate. Extreme value theory could be applied to the DNS to283

extrapolate return values, but this would not generate dynamical samples of events in the same284

way that TEAMS does.285

Doubling the resolution somewhat degrades the extent of the speedup, especially for pre-286

cipitation, but keeps some of the advantage (Fig. 2e,f). The higher-resolution runs are signifi-287

cantly more expensive: besides doubling horizontal resolution, we also increased vertical lev-288

els from 6 to 30 and reduced the timestep from 2400 to 600 seconds, resulting in ∼ (2×2×5×289

4 = 80)-times more expensive simulations. We expect that with further experimentation with290

population control parameters (such as 𝑁 , 𝐾), it should be possible to improve performance at291

this and much higher resolutions. The generalizability to a higher resolution shown here, though292

modest, is enough to draw cautious optimism for the algorithm’s scalability.293

We can better understand the mechanism for TEAMS’ success by examining a few case294

studies, or “storylines”, of events which are mutated from moderate ancestors into extreme de-295

scendants. Fig. 3 displays one case study for each target variable (precipitation and temperature),296

with the same advance split times as used in Fig. 2 (10 and 12 days, respectively). Boosting hap-297

pens either by amplifying an existing spike, or by materializing a new spike where none existed298

before. In Fig. 3a, the first cloning (green) mutated the ancestral spike into a smaller spike, but299

still cleared the threshold (∼ 20 mm/day), whereas the second cloning (yellow) first produced300

an even smaller spike at 𝑡 ≈ 25 but then discovered a new spike at 𝑡 ≈ 48. The two subsequent301

descendants (orange and brown) built further on this second spike, ultimately rising above the302

ancestor’s original score. In Fig. 3c, descendants build on the original spike leading to higher303

and higher severities. This is a desirable behavior for TEAMS. Metaphorically, “the apple shouldn’t304

fall too far from the tree”, or equivalently, subsequent generations should “stand on the shoul-305

ders of their predecessors”. Shortening the time horizon 𝑇 might help ensure this behavior, but306

𝑇 must also be long enough for later generations to distinguish themselves. How to quantify the307

dynamical relationships between parents and children in terms of advance split time is an ongo-308

ing research agenda, which might fruitfully be attacked by deterministic optimization strategies,309

like Newton’s Method, in the space of perturbations.310
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Target: TemperatureTarget: Precipitation

Doubling ancestors

(a) (b)

(c) (d)

(e) (f)
Doubling resolution

Figure 2. Performance of the rare event algorithm (TEAMS) against the benchmark direct numerical simu-

lation (DNS), as measured by accuracy and uncertainty of return levels for a given computational cost. Target

variables are precipitation (left) and surface temperature (right). About a baseline setting of T21 resolution

with 𝑁 = 16 ancestors (middle row), we perform two “pivot” experiments: doubling the number of ancestors

(top row) and doubling the resolution to T42 (bottom row). All curves are estimates of return level (severity

of an event) as a function of return period (the averaged elapsed time between two consecutive events) calcu-

lated by different methods: black dashed lines come from a long benchmark DNS, the best estimate of ground

truth, and each thin red line comes from a run of TEAMS with a different random seed (48 in total). The pur-

ple line and light red band indicate the median and inter-quartile range (25th-75th percentile) of these 48 runs,

or somewhat fewer in the far tail to include only those runs that split enough times to estimate the smallest

probabilities. For a fair performance comparison, gray error bars show the inter-quartile range of estimates

derived from random subsets of the long DNS, with each subset having the same cost as a single TEAMS

run, as measured by total duration. Each panel contains a table of corresponding parameters, including the

advance split time 𝛿, which is selected differently for the two targets based on Fig. 4.
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(a) (b)

(c) (d)

Figure 3. Examples of boosted simulations produced by TEAMS. Results are shown for (a,b) precipitation

with advance split time 10 days, and (c,d) temperature with advance split times 12 days—the values found

to be optimal. In panels (a,c), black dashed curves are the ancestor and colored curves are descendants (only

those in the same lineage as the most-extreme descendant—the “most-extreme lineage”). Each descendant’s

split time and peak time are marked by circles connected by a horizontal line (note that orange and yellow

lines in 3c overlap). In panels (b,d), the full sequence of descendant severities is shown as gray dots, and those

in the most-extreme lineage are also circled in color. Their horizontal position indicates the generation of

splitting at which they were spawned, and the dashed gray staircase indicates the algorithm’s level 𝑠 at that

same generation. Dots falling below the staircase represent rejections, while those rising above are accepted.
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4.2 Sensitivity analysis of advance split time311

Fig. 4 quantifies the variation in performance with 𝛿 using two simple performance indi-

cators. The first measures statistical accuracy in high return levels:

𝐿2 error =
(

1
log(𝜏max∕𝜏min) ∫

𝜏max

𝜏min

[

𝑠̂DNS(𝜏) − 𝑠̂TEAMS(𝜏)
]2 𝑑

[

log 𝜏
]

)1∕2
(4)

where 𝜏 is a return period running from 𝜏min = 50 days to 𝜏max = 1.6×104 years, and 𝑠̂(DNS,TEAMS)(𝜏)

represents the corresponding severity return level estimated by (DNS, TEAMS) by inverting the

estimator 𝜏(𝑠) in Eq. (3) with linear (in log 𝜏 space) interpolation. The integral is approximated

by numerical quadrature. Because the DNS is longer than the longest return time estimable by

TEAMS (and beyond the range shown in Fig. 2), we extrapolate 𝑠̂TEAMS to longer return peri-

ods using constant extrapolation, which penalizes runs that get stuck at small boosts and abort

at shorter return periods. The second indicator measures the efficacy in boosting to larger extremes:

Boost = 1
𝑀

𝑀
∑

𝑚=1
max{max(𝑆𝓁 − 𝑆𝑚, 0) ∶ 𝑋𝓁 is a descendant of 𝑋𝑚} (5)

where 𝑀 is the total number of ensemble members, including all ancestors and all accepted de-312

scendants (but not rejects). Fig. 4 shows both performance indicators’ 𝛿-dependance, and con-313

firms that an optimal 𝛿 does exist, in both senses of minimizing 𝐿2 (which has a broad valley)314

and maximizing Boost (which has a relatively narrow peak). Happily, the same 𝛿 is approximately315

optimal for both, and 𝐿2 is not very sensitive to changes in the value by ≲ 2 days. However, the316

two targets of precipitation and temperature have slightly different optimal 𝛿s of 10 and 12 days317

respectively, which we will show is consistent with slower ensemble dispersion of temperature318

in Fig. 5. Thus it appears that the appropriate target time is not universal but rather depends, at319

least weakly, on the choice of target variable.320

4.3 Ensemble spreading rate321

Finkel and O’Gorman (2024) found that the optimal 𝛿 was well estimated as the time 𝑡3∕8322

when a perturbed ensemble disperses to a fraction 3∕8 of its saturation dispersion. Having mea-323

sured the optimal AST by grid search in the previous section, we now compare it with 𝑡3∕8, which324

is computed by the following branching procedure (same as in Finkel and O’Gorman (2024)):325

1. Draw an initial condition 𝑋(0) ∼ 𝜌0, in our case a snapshot from the long DNS run plus326

some additional spinup of 60 days for good measure.327

2. Split 𝑋(0) into 𝐵 branches (each with its own random seed for SPPT) and let them evolve328

independently for 𝑇𝐵 days. Here we set 𝐵 = 12 to balance cost with statistical confidence329
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(a) (b)

(c) (d)

Figure 4. TEAMS performance diagnostics as functions of advance split time. We deployed TEAMS on

two different target variables (left: precipitation and right: temperature) with a sequence of advance split

times (ASTs) of 0, 4, 6, 8, 10, 12, 14, 16, 20, and 24. Each case was repeated 48 times with different random

seeds. The finer AST spacing of 2 days between 6 and 16 was done after an initial sweep with 4-day spacing

to identify a broadly optimal region. Optimality is assessed by the two diagnostics shown: (top) 𝐿2 error

between TEAMS and DNS return level curves, equivalent to the root-mean-square distance between red and

black curves in Fig. 2 (smaller is better); and (bottom) the Boost, defined as the maximum increase in severity

between an ensemble member and all of its descendants (or zero if all its descendants are less severe), which

is averaged over all members in a TEAMS run. Both 𝐿2 and Boost are defined for a single TEAMS run, and

there are 48 runs performed at each AST, whose (mean, median, interquartile range) are plotted as (black

lines, red lines, and red bands) respectively.
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in estimating root-mean-squared error (RMSE) as defined below. We set 𝑇𝐵 = 50 days330

which is long enough for the RMSE to saturate (it is similar to the TEAMS time horizon,331

𝑇 = 60 days).332

3. Continue a simulation from 𝑋(0) for an equilibration interval 𝑇𝐸 , and split 𝑋(𝑇𝐸) into333

𝐵 more branches.334

4. Repeat step 3 (but starting from the most recent split time) 𝑊 times to create 𝑊 ensem-

bles, resulting in a dataset

{𝑋𝑏,𝑤(𝑟) ∶ 1 ≤ 𝑏 ≤ 𝐵, 1 ≤ 𝑤 ≤ 𝑊 , 0 ≤ 𝑟 ≤ 𝑇𝐵} (6)

(𝑊 stands for “whorls”, a botanical term for a point on a stem from which multiple branches335

emanate). We set 𝑊 = 20. 𝑟 denotes the time since the split, equivalent to 𝑡 − (𝑤 −336

1)𝑇𝐸 for the 𝑤th whorl.337

5. Measure the ensemble dispersion from each whorl 𝑤 = 1,… ,𝑊 in terms of the RMSE

as a function of the elapsed time 𝑟 since the split:

RMSE𝑤(𝑟) =

√

√

√

√
1
𝐵

𝐵
∑

𝑏=1
𝐷
(

𝑋𝑤,𝑏(𝑟), 𝑋𝑤,0(𝑟)
)2

(7)

Here 𝑋𝑤,𝑏 refers to the 𝑏th branch from the 𝑤th whorl, while 𝑏 = 0 denotes the “tree trunk”338

which spawns these branches. The distance function 𝐷(𝑋, 𝑌 ) is Euclidean distance in the339

physical field of interest calculated over a region, chosen here to be the entire Northern340

Hemisphere. Other distance metrics could be used, for example by restricting to the re-341

gion around the target location, which would be possibly more relevant to the event of in-342

terest but also more noisy. Fig. 5 displays the results of one whorl from this branching ex-343

periment, in the form of local precipitation and temperature timeseries (top row) and RM-344

SEs of these two fields, respectively (bottom row). Individual branches, plotted in red, show345

the impact of different stochastic parameterization realizations.346

6. Because different initial conditions spread at different rates, RMSE𝑤 might have differ-347

ent shapes for different whorls, but each will eventually saturate to the same asymptotic348

value. The RMS of RMSE𝑤 across all 𝑤s—i.e.,
√

1
𝑊

∑

𝑤 RMSE2
𝑤, denoted RMSE(𝑟)—349

is displayed as purple lines in Fig. 5c,d, and we estimate the asymptotic RMSE by its fi-350

nal 15-day average. Define the fractional saturation time 𝑡𝜖,𝑤 as the time 𝑠 at which RMSE𝑤(𝑟)351

reaches a fraction 𝜖 of the asymptotic value. Following the prescription from Finkel and352

O’Gorman (2024), 𝛿 should be approximated by 𝑡3∕8 ∶=
1
𝑊

∑𝑊
𝑤=1 𝑡3∕8,𝑤. This is not ex-353

actly the same as the time that RMSE(𝑟) crosses the threshold, but they are practically in-354

distinguishable for the full-NH Euclidean distance (smaller-area distances lead to a dis-355

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

crepancy). A benefit of averaging times first instead of RMSEs first is that it gives a straight-356

forward estimate of standard deviation of 𝑡3∕8 across 𝑤s, which is denoted in the legends357

along with the mean [𝑡3∕8 = 𝑡3∕8 ± std(𝑡3∕8)].358

For precipitation, we find 𝑡3∕8 = 6.3 ± 1.0 days, and for temperature 10.4 ± 0.7 days. A359

longer timescale for temperature is not surprising given that temperature is a smoother field than360

precipitation, and it correctly predicts that a longer 𝛿 is optimal for temperature as compared to361

precipitation. Comparing to the grid search over AST in Fig. 4, 𝑡3∕8 systematically underestimates362

the optimal AST: for precipitation, 𝑡3∕8 = 6.3 days compared to an optimal time of 10 days, and363

for temperature, 𝑡3∕8 = 10.4 days compared to an optimal time of 12 days. In both cases, the364

optimal time roughly matches 𝑡2∕3. We used the full Northern hemisphere to estimate ensemble365

dispersion which is roughly analagous to what we considered in the Lorenz 96 system and re-366

duces noise. However, the bias reduces with smaller-area averages, with 𝑡3∕8 = 8.5 and 11.7367

days respectively when restricting the averaging region for the distance metric 𝐷 to 40◦ ×10◦368

lon×lat centered on the target. This suggests that more localized measurements of ensemble dis-369

persion may be needed when the domain is higher-dimensional. These are all important nuances370

to bear in mind when expanding to other applications, especially those with different spatiotem-371

poral scales such as mesoscale convective systems.372

5 Conclusion373

Extreme weather events have long been recognized as a major challenge for risk assess-374

ment, which motivates the use and development of suitable rare event algorithms: protocols to375

perturb simulations, over-sample the extremes, and then correct for the statistical bias introduced.376

The subclass of extremes which are sudden and transient resist standard rare event algorithms377

by simply running their course before the perturbations can take effect. We augmented a stan-378

dard algorithm, adaptive multilevel splitting (AMS) with early perturbations, resulting in “try-379

ing early AMS” (TEAMS), and after developing the method on the benchmark Lorenz-96 sys-380

tem in Finkel and O’Gorman (2024), here we have successfully applied the algorithm to a three-381

dimensional model of the atmosphere’s general circulation, extending the estimable range of re-382

turn periods to 100 − 150 years with only ∼ 20 years of simulation and 300 − 500 years with383

only ∼ 40 years of simulation.384

The key hyperparameter of this algorithm is the advance split time: how far ahead of time385

to perturb a simulated extreme event to optimally sample the range of how much more or less se-386
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(a) (b)

(c) (d)

Figure 5. Ensemble dispersion. (a) Precipitation over the target region during a 50-day stretch. The con-

trol simulation (black) and 12 perturbed ensemble members (red) are all subject to different realizations of

stochastic parameterization (SPPT) with the same statistics; see text for details. (c) Area-weighted Euclidean

distance (RMSE) between each realization and the control (red) for the same time span, using the full north-

ern hemisphere precipitation field. The RMSE over different initial conditions (i.e. different whorls) is shown

in purple (denoted RMSE(𝑟) in the text). The long-term average, or “saturation RMSE”, is shown as a hori-

zontal black dashed line. The horizontal gray threshold marks the fraction 3∕8 of saturation, and the vertical

gray line with error bars delineates the mean and standard deviation of 𝑡3∕8, the threshold-crossing time,

across whorls as 𝑡3∕8 ± std(𝑡3∕8). (b,d): Same as (a,c), but using surface temperature instead of precipitation

fields.
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vere that event could have been. Exhaustive experiments with Lorenz-96 informed a heuristic387

rule to set the advance split time based on ensemble dispersion rates (Finkel & O’Gorman, 2024),388

and here we verified the same rule as a good approximation to the optimal choice in this much389

more complex, albeit idealized, atmospheric model, and for two different target variables: heavy390

precipitation and heat extremes. This first evidence of generalizability leads us to conjecture that391

a similar rule holds in more complex, realistic GCMs.392

There are several wide avenues for advancing this research. An obvious next step is do test-393

ing at higher resolution and/or more realistic GCMs or regional climate models. However, al-394

gorithmic improvements are still needed for broad application. In particular, we need improved395

guidance in how to choose the time horizon 𝑇 and the population control parameters: ancestor396

pool 𝑁 , killing rate 𝐾 , and computational budget 𝑀max. More interestingly, the appropriate choice397

of perturbation space is quite open-ended as a general question, especially when stochastic pa-398

rameterization is not intrinsically a part of the model. Others have conjectured that the pertur-399

bation space is inconsequential provided the magnitude is small (Ragone et al., 2018), but this400

remains to be tested, as we are doing in separate ongoing work. Moreover, utilizing determin-401

istic optimization to design a more structured sequence of perturbations (in a similar fashion as402

Farazmand and Sapsis (2017) and Sapsis (2020)) may be a route toward more efficient sampling403

strategies.404

Another immediate goal—beyond our current scope of establishing the TEAMS algorithm,405

but more and more relevant with more realistic models—is to physically interpret the algorithm’s406

output, which differs from typical datasets in that ensemble members are weighted unequally and407

grouped into “families”. Spatial composites of relevant fields, like column water vapor, can be408

extracted by applying the weighted-average formula (2) pointwise to maps, which has been done409

for seasonal heat extremes in, e.g., Ragone et al. (2018); Ragone and Bouchet (2021); Miloshe-410

vich et al. (2024); Le Priol et al. (2024). In particular, visualizing differences between an ances-411

tor and its descendants in this way will reveal mechanisms for physical drivers that strengthen412

or dampen extremes, and can be compared with traditional perturbations used in numerical weather413

prediction like Lyapunov, singular, and bred vectors (e.g., Norwood et al., 2013; Palmer & Zanna,414

2013). The value added by rare event algorithms is the chance to greatly enhance statistical con-415

fidence in composite maps and other diagnostics.416

Overall, we wish to convey simultaneous signals of caution and optimism. “Extreme weather417

events” do not comprise a monolithic category, but are tremendously diverse in spatiotemporal418
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scales, and one rare event algorithm off the shelf cannot be expected to successfully sample all419

of them. Here we have identified one particular dimension of challenge—relative timescales of420

ensemble dispersion and the event itself—and successfully remedied it using insight from a sim-421

pler model. The specific algorithm, and the general strategy for leveraging a model hierarchy,422

will help guide the community’s continued exploration of extreme events, a growing frontier of423

climate research.424
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