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Rare event sampling for moving targets: extremes of
temperature and daily precipitation in a general circulation
model
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Key Points:

- Extreme weather risk is highly uncertain, but can be estimated more accurately by targeted
rare event sampling.

- Rare event algorithms are challenged by short time scales of weather events which limit
ensemble diversity.

- Optimally timed perturbations enable sped-up probability estimates of precipitation and

heat extremes in an aquaplanet climate model.
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Abstract

Extreme weather events epitomize high cost: to society through their physical impacts, and to
computer servers that simulate them to assess risk and advance physical understanding. It costs
hundreds of simulation years to sample a few once-per-century events with straightforward model
integration, but that cost can be much reduced with rare event sampling, which nudges ensem-
bles of simulations to convert moderate events to severe ones, €.g., by steering a cyclone directly
through a region of interest. With proper statistical accounting, rare event algorithms can pro-
vide quantitative climate risk assessment at reduced cost. But this can only work if ensemble mem-
bers diverge fast enough. Sudden, transient events characteristic of Earth’s midlatitude storm track
regions, such as heavy precipitation and heat extremes, pose a particular challenge because they
come and go faster than an ensemble can explore the possibilities. Here we extend standard rare
event algorithms to handle this challenging case in an idealized atmospheric general circulation
model, achieving ~ 5—10 times sped-up estimation of long return periods for extremes of sur-
face temperature and daily precipitation (e.g., return periods of 100-150 years from 20 years of
simulation). The algorithm, called TEAMS (“trying-early adaptive multilevel splitting”’), was de-
veloped previously using a toy chaotic system, and relies on a key parameter—the advance split
time—which may be estimated based on simple diagnostics of ensemble dispersion rates. The
results are promising for accelerated risk assessment across a wide range of physical hazards us-

ing more realistic and complex models with acute computational constraints.

Plain Language Summary

Climate hazards are largely felt not through global mean temperature, but through extreme
weather events, which are dangerous not only for their physical severity but also for their rarity:
by definition, they are very difficult to anticipate and prepare for. The same characteristic makes
risk assessment a very hard statistical problem. Numerical simulations can be used to augment
small sample sizes, but at great computational cost. Rare event algorithms offer a novel way to
“steer” simulations towards the extremes to do targeted risk assessment at reduced cost, but this
can be challenging when the events under study are transient in nature, such as passing rainstorms
and heat extremes in Earth’s midlatitude region. This paper presents a successful application of
a rare event algorithm to such transient extremes in an idealized model of Earth’s atmospheric
circulation, building on previously published results with a simpler toy model of spatial chaos.
The core of the method is to select the right time to perturb the simulations, and the fact that the

method generalizes is a promising sign that it can scale to even more complex, realistic models.
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1 Introduction

The highest-impact extreme weather events are those that occur so seldom as to catch communities—

cities, ecologies, and scientists alike—surprised and unprepared (Sillmann et al., 2017). Even
with physically accurate numerical models capable of simulating extremes, running them long
enough to collect ample statistics can be prohibitive. A key innovation to close this gap is rare
event sampling, a protocol which steers ensembles of simulations towards the extremes by re-
peated perturbation, pruning, and cloning steps, all while keeping track of the bias introduced

to correct for it in statistical estimation. Originally developed for nuclear physics simulation (Kahn
& Harris, 1951), rare event algorithms have been specialized and developed for molecular dy-
namics (Zuckerman & Chong, 2017), reliability engineering (Huang et al., 2016; Sapsis, 2020;
Uribe et al., 2021; Zhang et al., 2022), and climate science (e.g., Ragone et al., 2018; Wouters

& Bouchet, 2016; Webber et al., 2019). Rare event algorithms are attractive for being agnostic
to the model: importantly, they can operate on models grounded in physics and potentially could
also be applied to faster, data driven models with the alluring possibility of generating abundant

extreme events at will (Mahesh et al., 2024, 2024).

Yet there remain some methodological roadblocks to the broad deployment of rare event
algorithms across different models and different rare events. This paper addresses one such road-
block: a timescale overlap between the event of interest and the ensemble dispersion which is cru-
cially necessary to sample different hypothetical versions of the event. There is no such overlap
for long-lasting, spatially extended events such as hot or rainy seasons—defined by large seasonal
mean temperature or precipitation amplitudes. Such events are already a successful application
for rare event algorithms (Ragone et al., 2018; Wouters & Bouchet, 2016), as multiple succes-
sive rounds of ensemble splitting can fit into a single season and achieve extreme anomalies by
essentially chaining together a sequence of moderate anomalies. But transient events of much
shorter duration don’t yield so easily; naively applying the same perturbation protocol simply re-
sults in disappointing replication of the same moderate extreme again and again, without mean-
ingful exploration into the far tails (Lestang et al., 2020; Rolland, 2022; Finkel & O’Gorman, 2024).
This is a major limitation given that transient cyclones and antiyclones can bring heavy rain and

temperature extremes that are among the most impactful extreme events for society.

We developed a simple remedy to this problem, drawing inspiration from ensemble boost-
ing (Gessner et al., 2021; Gessner, 2022), namely to perturb simulations in advance of the event.

Ensemble boosting, as originally formulated, does not assign probabilities but only generates “sto-
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rylines” (until more recent developments in Bloin-Wibe et al. (2025) and Finkel and O’ Gorman
(2025)), but we augmented boosting with an acceptance/rejection step from reliability engineer-

ing (Au & Beck, 2001) to retain statistics, and demonstrated this on the Lorenz-96 system in Finkel
and O’Gorman (2024). Lorenz-96 is relatively simple model of spatiotemporal chaos, but it cap-
tures the essence of baroclinic waves and has been a helpful benchmark for data assimilation, which
presents similar challenges as sampling algorithms. The resulting algorithm, TEAMS (“trying-
early adaptive multilevel splitting”), introduces a key hyperparameter, the advance split time, which
determines when to split the simulation relative to the event for an optimal balance of exploration
(with high risk of rejection) and exploitation (with low risk of rejection but limited rewards). Our
main contribution here is to demonstrate a successful use of TEAMS on an actual climate model,
albeit an idealized one, to sample short-timescale events, namely high surface temperatures and

daily precipitation rates.

This paper is organized as follows. Section 2 briefly specifies the physical model, a gen-
eral circulation model (GCM) in an aquaplent configuration, emphasizing two modifications of
reduced resolution for computational efficiency and the addition of stochastic parameterization.
Section 3 outlines the rare event algorithm TEAMS, emphasizing the most recent modifications
of how rejection is handled and the halting criteria. Section 4 shows the results of applying TEAMS:
efficiency gains in calculating long return periods (100 years and longer), and the generation of
corresponding dynamical samples. Section 5 concludes with a summary and outlook on further

avenues of development.

2 The physical model

We use an idealized GCM based on the GFDL spectral model and similar to that developed
in Frierson et al. (2006) with slight modifications as in O’Gorman and Schneider (2008). A spec-
tral dynamical core integrates the primitive equations, with a lower boundary condition consist-
ing of a slab ocean (aquaplanet) that is shallow, well-mixed, and energy-conserving (not fixed-
temperature). Insolation is fixed to an average distribution, with no seasonal or diurnal cycle. A
two-stream gray radiation scheme is used, with a prescribed distribution of longwave optical depth.
We turn off convection parameterization, so that condensation of water vapor occurs only at the
large scale (grid box size), as was found to be adequate for midlatitudes by Frierson et al. (2006).

Turbulent diffusivities are smoothed in time following Anderson et al. (2004).
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We make two further modifications for this rare event sampling demonstration. To enable
computational efficiency, we reduced the resolution to T21 in the horizontal, with six o-levels
in the vertical (half levels at ¢ = 0.0, 0.0343, 0.15, 0.4, 0.7, 0.966, 1.0), and a 40-minute timestep.
We also present some limited results at a higher horizontal resolution of T42 and 30 vertical lev-
els. To induce variability between ensemble members, we implemented a stochastic parameter-
ization scheme known as stochastically perturbed parameterized tendencies (SPPT) that was de-
veloped in numerical weather prediction to enhance ensemble spread to more likely capture the
observed evolution (Palmer et al., 2009; Berner et al., 2009, 2015), and which rare event sam-
pling can use to discover unlikely paths towards extremes. Our implementation of SPPT closely
follows the specification in Palmer et al. (2009), which contains further details and background.
In brief, SPPT modifies the total parameterized tendencies of horizontal winds, humidity, and
temperature by a multiplicative factor of 1+rgppr(x, ¥, 2, 1) at every timestep, where rgppr(x, ¥, 2, 1)
is a random spatiotemporal pattern whose spherical harmonic modes each evolve as an indepen-
dent red noise process. The total parameterized tendencies include contributions from large-scale
condensation, vertical turbulent diffusion, and radiation. Key tunable parameters are the noise
amplitude ogppr and the characteristic length and time scales Lgppr and zgppr. To prevent un-
realistically large fluctuations, rqppr is clipped to the range (—2cgppr, 205ppr) at every timestep.
Sensitivity analysis led us to select ogppr = 0.3, Lgppr = 500 km, and zgppt = 6 hours for

this study, quite similar to the moderate-amplitude experiments in Palmer et al. (2009).

We use this computationally efficient GCM because it accommodates the large ensemble
sizes and parameter tuning experiments needed for development and testing of rare-event sam-
pling strategies. Our aim is to demonstrate a novel methodology more than a particular scien-
tific conclusion, and for this purpose a lower rung on the model hierarchy (Held, 2005) take on
greater value. The same idealizations (such as zonally symmetric boundary conditions) that make
this model attractive for extensive parameter sweeps, as in O’Gorman and Schneider (2008) and
O’Gorman and Schneider (2009), also make it well-suited for rare event algorithm development.
At the same time, even the coarse model is physically realistic enough that the insights learned

here should transfer to more realistic models.

Fig. 1 displays some characteristics of the surface temperature and precipitation fields pro-
duced by the GCM once it reaches statistical equilibrium after a spinup period. Throughout the
paper, surface temperature refers to the surface air temperature evaluated at the lowest model level.
Outputs from the GCM are six-hourly; temperature is instantaneous (noting there is no diurnal

cycle) and precipitation is averaged over the previous day. Despite the idealized setup and coarse
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resolution, the baroclinic waves of Earth’s midlatitude storm track and associated precipitation

and temperature variability are clearly visible in the model fields (Fig. 1a,b), which grow and de-
cay over synoptic ~ 5-day timescales (indicated by the Hovmoller diagrams in Fig. 1c,d). Our

aim is to characterize—using rare event sampling—the extreme, local fluctuations in these fields

at the storm track’s center. We therefore fix a target latitude of 45°N and a target longitude of 180°E,
taking the field value in a single grid cell (~ 6°) as the target variable. The choice of longitude

is arbitrary due to the model’s zonal homogeneity, but fixing a longitude simplifies the event def-
inition and would be necessary anyway in Earth system models with zonal asymmetries. Still,

we take advantage of zonal homogeneity in computing “ground truth” statistics from long sim-
ulation by pooling together eleven longitudinal rotations in 30° increments for more stable es-
timation with twelve times the data. Fig. 1(e,f) displays the long-term climate statistics of pre-
cipitation and temperature at the target location, revealing ocgppt ~ 0.3 to be near the upper limit

of noise level that still avoids disrupting the deterministic model’s statistics too severely. These
results are based on a long run of 36,500 days (100 years, or 1200 years including longitudinal
rotation) after spinup, which we refer to as a direct numerical simulation (DNS) and which will

be used for validation. The data used for initializing TEAMS, on the other hand, is branched from
the long DNS after spinup and integrated independently, with a different seed for each run of TEAMS,
in order to avoid data leakage (see “ancestor initialization” in the algorithm described in section

3).

3 The TEAMS algorithm

Let us briefly describe the TEAMS algorithm, following Finkel and O’Gorman (2024). Along
the way we delineate between generic parameter choices and those made in this study to target
local temperature and precipitation extremes in the GCM. Readers interested primarily in the sam-

pling results can skip to Section 4.

1. Ancestor initialization: Sample N initial conditions { X;(0), X,(0), ..., X 5(0)} from the

distribution of interest, denoted p,. For us, p is the distribution at statistical steady state,
i.e., the limiting distribution of a very long GCM simulation. Other applications might
restrict the initial conditions to specific phases of oscillation (e.g., neutral El Nifio con-
ditions) or, if a seasonal cycle is present, specific dates (e.g., June 1 conditions). For our
study, we can extract the X,(0)’s as snapshots from a direct numerical simulation (DNS),
which is branched from the DNS used for validation by changing the random seed for SPPT

after spinup. Consecutive ancestral initial conditions are separated by a gap of T = 60
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Figure 1. Simulated precipitation and surface temperature fields and their return levels. After a spin-up of

500 days, the aquaplanet GCM produces physically plausible large-scale storm track dynamics: a sequence of
extratropical cyclones and anticyclones bringing packets of precipitation (a) and temperature fluctuations (b),
propagating eastward with lifetimes of ~ 5 days (Hovmoller diagrams in ¢ and d). We select a target region
(one grid cell marked by a black square in (a,b)) to fall at 45°N, near the latitude of maximum mean precip-
itation, and a longitude of 180°E (which is arbitrary because climatological statistics are zonally uniform).
Horizontal and vertical dashed lines in (c,d) indicate the timing of the snapshot and the target longitude. Pan-

els e,f show return level vs. return period plots of both targets, local precipitation and temperature, for a range

< 0.3 and start

~

of values of the SPPT forcing strength ogppr. The return levels vary only moderately for ogppy

deviating substantially for larger values, which is why we adhere to ogppr = 0.3 in panels (a-d) and hereafter.



172

173

176

179

181

182

183

185

186

189

192

196

days; in other words, X;(0) = Xpns(iT), where the clock for Xpyg starts after spinup
and the timestamps are all reset to zero for notational convenience, utilizing the model’s
autonomous dynamics. The gap helps each successive ancestor lose the memory of the
previous one and become more independent, which tends to make the results more sta-
ble, i.e. lower-variance, even though the ancestors need not be strictly independent (only
identically distributed). Section 4.3 will demonstrate T = 60 days is long enough for

independence.

. Ancestor simulation: Run the dynamics forward for a time horizon T" from each ances-

tral initial condition, creating the ancestral trajectories {X,(t) : 1 < n < N,0 <
t < T}. For us, this just means extracting segments of the branched-oftf DNS, and we
use the same T = 60 days here as the time gap between ancestors. Assign each ances-

tor a probability weight W, = 1. Furthermore, initialize a set of active members
A={1,,N}=. {al,...,aA} (1)

with a size A = N, which will be modified by repeated culling and replenishment in fol-
lowing steps. Also initialize an empty list of severity levels S = [], which will grow in

the following steps.

. Culling: Rank the active ensemble members a € A by their severity, S, = S(X,) de-

fined as the peak value over time of the intensity R,(t) = R(X,(t)) which defines the tar-
get variable of interest. In our case, our outputs are six-hourly and R(X,(¢)) is the precip-
itation (averaged over the preceding day) or surface temperature (measured at a single six-
hourly snapshot) at the target grid box indicated in Fig. 1. Choose a number K < A and
cull the the K least-extreme active members. We choose K = %N , but one could also

set K as a constant number (commonly K = 1, as in Finkel and O’Gorman (2024)) or
some other fixed fraction of N (in engineering applications, the related “subset simula-
tion” algorithm commonly culls aggressively with K ~ 0.9N (Au & Beck, 2001)). At
this point, by design, the K-th smallest severity s has an estimated exceedance probabil-
ity of (N — K)/N (for us, 1/2). Append the list of severity levels, S « S U [s]. Re-
move the culled members from the active set, reducing its size to A—K, re-index its mem-

bers accordingly to A = {ay,...,a,_g}, and reset the size A to A — K.

. Cloning: Shuffle the active members in a random order, called the “parent queue”. For

the first parent a in the queue identify the earliest timestep (in six-hourly outputs) that R, (t) >
s and call this time tfl At an earlier time tfl—é, spawn a new ‘“‘child” X which shares its

parent’s history up until #} —4, but then gets perturbed by use of a new seed for random
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number generation in the stochastic parameterization scheme—and thereafter diverges from
its parent. 6 is the key advance split time parameter, which we vary systematically in this
study from O to 20 days. The next step depends on whether the child’s severity exceeds

S

(a) If the child’s severity exceeds s, we call this “success” and officially admit the child into

the active population: X G = X, with the same probability weight as its parent. To
maintain a constant total probability weight in the active population, adjust all active
weights by the same factor: W, « AAHVV[, foralla € A. Finally, increment A to

A+ 1

(b) Otherwise, in case the child’s severity fails to exceed s (which might happen, because

the split happens before the parent’s first threshold crossing; see Fig. 1 in Finkel and
O’Gorman (2024)), discard the child completely (formally, set its weight to zero) and

move to the next parent in the queue to clone it in the same way.

Keep cycling through the queue until either the active set is fully replenished to a size A =
N (the original population size) with K new successful children, or the total number M
of simulations (including ancestors, discarded members, and inactive members) exhausts
a pre-determined computational budget, M = M ,,. For our main experiments, we set

M, = 150.

. Iteration: Repeatedly perform step 3 starting with the active population, resulting in a higher

level s, followed by step 4 on the sub-ensemble exceeding s.

. Termination: halt the algorithm once the number of severity levels in S exceeds a pre-set

number (in our case, 20), or the total number M of simulations reaches the aforementioned

budget M,

max-*

. Post-analysis: For any observable of interest expressible as F(X), where X denotes a ran-

dom variable comprising a whole trajectory {X(r) : 0 < ¢t < T} with X(0) drawn

from p, and F is a generic functional, estimate its expectation as
M

M
zmzl Wm

The denominator is always equal to N. In particular, for any given severity s, an estimate

F= 2)

I]S’{ S > s} for its exceedance probability is found by defining F(X) := I{S(X) > s}
in the formula above, where [ is the indicator function (one if its argument is true, zero
otherwise). The corresponding return period t(s)—the average time between consecu-

tive exceedances, using a Poisson process statistical model—is estimated following Lestang
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etal. (2018) as

T

= , 3)
log[1 — P{S > s}]

7(s) = —

where T is the time horizon.

This version of TEAMS mostly follows the version in Finkel and O’ Gorman (2024), but differs
in two substantial ways. First, in step 4, the previous version of TEAMS would allow parents to
stand in for their failed children, and raise the level after K cloning attempts even if they all fail,
whereas the new version refuses to raise the level before children alone repopulate the ensem-
ble. Heuristically, the new version is more like mastery-based learning (Winget & Persky, 2022),
wherein students only advance after demonstrating mastery even if it takes a longer time with re-
medial coursework. Even if the levels don’t advance as high this way, it ensures that the levels
reached are more thoroughly sampled and avoids overextending an “aging” ensemble beyond its
means. Of course, this risks stagnation at a single level that is impossible to overcome. To cut
our losses, we impose a lean budget of M, = 150 as the second major difference from Finkel
and O’Gorman (2024), where the budget was 1024 and in practice was rarely reached because
of a second “diversity” criterion that is not used here. We have found this version to give more
reliable speedup at shorter return periods with reasonable costs, and to reduce the chance of un-
derestimating return values in a given TEAMS run (“apparent bias”), which was critical for ex-

tending this algorithm from a toy model (Lorenz-96) to a GCM.

In the sense of repeatedly spawning descendants until success (or computational budget
overrun), our new version resembles “anticipated AMS” (Rolland, 2022). However, in another
important sense, anticipated AMS still differs by splitting ancestors when R, (¢) crosses a lower
threshold than s, rather than at a fixed advance split time. This would not work on precipitation,
which rises from zero to peak values more rapidly than ensemble members can diverge; hence,

the TEAMS strategy of splitting a fixed time in advance.

The advance split time (AST), 6, is a crucial hyperparameter underlying TEAMS which

must be chosen in a cheap and reliable way in order to scale TEAMS successfully to realistic GCMs.

In section 4.3, we estimate the proposed AST from Finkel and O’Gorman (2024), namely the time
until a perturbed ensemble disperses to a fraction 3 /8 of its saturation dispersion, using a branch-
ing procedure. But first, we will present results from TEAMS across a range of ASTs to demon-

strate its ability to sample extreme events in the GCM.

—10-
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4 Results
4.1 TEAMS performance

We ran TEAMS with a range of advance split times 6 € {0, 4, 6, 8, 10, 12, 14, 16, 20,
24} days. Fig. 2 displays the resulting estimates of return level vs. return period for both targets
of local precipitation (left), with 6 = 10 days, and temperature (right), with 6 = 12 days, which
are selected as optimal values based on sensitivity analysis to be presented in Sec. 4.2. The main
sequence of experiments used T21 resolution and N = 16 ancestors, but as a test of the robust-
ness of 6, we performed two “pivot” experiments about the optimal values: doubling the ances-
tor pool to N = 32, and doubling horizontal resolution to T42 with 30 vertical levels and a time

step of 600s.

Our overall assessment of TEAMS is that it speeds up estimation of extreme events rela-
tive to DNS by factors of 5-10. Since GCMs are far more expensive than toy models like Lorenz-
96, here we focus on the performance of individual runs of TEAMS instead of pooled estima-
tion across many such runs as we did in Finkel and O’Gorman (2024). In Fig. 2, the median re-
turn level across TEAMS runs (purple line) is generally very close to the DNS ground truth (black
dashed line), indicating that the overall bias is not large. The red bands in Fig. 2 assess reliabil-
ity by how close to the ground truth one can expect a single TEAMS run to land with 50% prob-
ability. Comparing red to gray error bars—the latter coming from DNS, computed with a bud-
get equal to a single TEAMS run—we see a tradeoff between the bulk and the tail. For the de-
fault case of N = 16 (Fig.2c,d), one run of TEAMS is equivalent to ~ 19 years of DNS in com-
putational cost. TEAMS is less certain in return periods < 19 years than DNS, but provides a
good estimate for the range ~ (19 — 100) years (for precipitation) and ~ (19 — 150) years (for
temperature), which a 19-year DNS simply cannot estimate. We take the upper range of relia-
bility to be where the error bar starts behaving erratically due to fewer TEAMS runs splitting that
many times. TEAMS performs similarly on precipitation and temperature, even though the tails
are shaped quite differently: from extreme value theory, precipitation shape parameters often take
both positive and negative signs, indicating unbounded or bounded tails (Ragulina & Reitan, 2017),

whereas temperature shape parameters tend to be negative (Krakauer, 2024).

Doubling the ancestor pool from N = 16 to 32 (Fig. 2a,b) noticeably improves TEAMS’
reliability, narrowing the error bars and giving a larger increase in the longest return period. In
this case, one TEAMS run is equivalent to just under 40 years of DNS. We find that one run of

TEAMS is less certain than DNS for return periods less than 40 years, but provides a good es-

—11-
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timate for return periods from 40-300 years (for precipitation) and 40-500 years (for temperature),
which a 40 year DNS could not estimate. Extreme value theory could be applied to the DNS to
extrapolate return values, but this would not generate dynamical samples of events in the same

way that TEAMS does.

Doubling the resolution somewhat degrades the extent of the speedup, especially for pre-
cipitation, but keeps some of the advantage (Fig. 2e,f). The higher-resolution runs are signifi-
cantly more expensive: besides doubling horizontal resolution, we also increased vertical lev-
els from 6 to 30 and reduced the timestep from 2400 to 600 seconds, resulting in ~ (2X2X5X
4 = 80)-times more expensive simulations. We expect that with further experimentation with
population control parameters (such as N, K), it should be possible to improve performance at
this and much higher resolutions. The generalizability to a higher resolution shown here, though

modest, is enough to draw cautious optimism for the algorithm’s scalability.

We can better understand the mechanism for TEAMS’ success by examining a few case
studies, or “storylines”, of events which are mutated from moderate ancestors into extreme de-
scendants. Fig. 3 displays one case study for each target variable (precipitation and temperature),
with the same advance split times as used in Fig. 2 (10 and 12 days, respectively). Boosting hap-
pens either by amplifying an existing spike, or by materializing a new spike where none existed
before. In Fig. 3a, the first cloning (green) mutated the ancestral spike into a smaller spike, but
still cleared the threshold (~ 20 mm/day), whereas the second cloning (yellow) first produced
an even smaller spike at t &~ 25 but then discovered a new spike at ¢t ~ 48. The two subsequent
descendants (orange and brown) built further on this second spike, ultimately rising above the
ancestor’s original score. In Fig. 3c, descendants build on the original spike leading to higher
and higher severities. This is a desirable behavior for TEAMS. Metaphorically, “the apple shouldn’t
fall too far from the tree”, or equivalently, subsequent generations should “stand on the shoul-
ders of their predecessors”. Shortening the time horizon T' might help ensure this behavior, but
T must also be long enough for later generations to distinguish themselves. How to quantify the
dynamical relationships between parents and children in terms of advance split time is an ongo-
ing research agenda, which might fruitfully be attacked by deterministic optimization strategies,

like Newton’s Method, in the space of perturbations.

—12—
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Figure 2. Performance of the rare event algorithm (TEAMS) against the benchmark direct numerical simu-
lation (DNS), as measured by accuracy and uncertainty of return levels for a given computational cost. Target
variables are precipitation (left) and surface temperature (right). About a baseline setting of T21 resolution
with N = 16 ancestors (middle row), we perform two “pivot” experiments: doubling the number of ancestors
(top row) and doubling the resolution to T42 (bottom row). All curves are estimates of return level (severity
of an event) as a function of return period (the averaged elapsed time between two consecutive events) calcu-
lated by different methods: black dashed lines come from a long benchmark DNS, the best estimate of ground
truth, and each thin red line comes from a run of TEAMS with a different random seed (48 in total). The pur-
ple line and light red band indicate the median and inter-quartile range (25th-75th percentile) of these 48 runs,
or somewhat fewer in the far tail to include only those runs that split enough times to estimate the smallest
probabilities. For a fair performance comparison, gray error bars show the inter-quartile range of estimates
derived from random subsets of the long DNS, with each subset having the same cost as a single TEAMS

. 13- . . .
run, as measured by total duration. Each panel contains a table of corresponding parameters, including the
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Figure 3. Examples of boosted simulations produced by TEAMS. Results are shown for (a,b) precipitation
with advance split time 10 days, and (c,d) temperature with advance split times 12 days—the values found

to be optimal. In panels (a,c), black dashed curves are the ancestor and colored curves are descendants (only
those in the same lineage as the most-extreme descendant—the “most-extreme lineage”). Each descendant’s
split time and peak time are marked by circles connected by a horizontal line (note that orange and yellow
lines in 3c overlap). In panels (b,d), the full sequence of descendant severities is shown as gray dots, and those
in the most-extreme lineage are also circled in color. Their horizontal position indicates the generation of
splitting at which they were spawned, and the dashed gray staircase indicates the algorithm’s level s at that

same generation. Dots falling below the staircase represent rejections, while those rising above are accepted.

14—



311

313

316

319

321

322

324

325

326

328

4.2 Sensitivity analysis of advance split time

Fig. 4 quantifies the variation in performance with § using two simple performance indi-

cators. The first measures statistical accuracy in high return levels:

Tmax

L2 error = < !

1/2
102(Tmax / Tmin) [Sons(?) = StEAms (7)) *d [log 7| ) (4)

Tmin

where 7 is a return period running from z,,;, = 50 days to 7,,,, = 1.6x10* years, and Sons TEAMS) ()
represents the corresponding severity return level estimated by (DNS, TEAMS) by inverting the
estimator 7(s) in Eq. (3) with linear (in log = space) interpolation. The integral is approximated

by numerical quadrature. Because the DNS is longer than the longest return time estimable by
TEAMS (and beyond the range shown in Fig. 2), we extrapolate Stpams to longer return peri-

ods using constant extrapolation, which penalizes runs that get stuck at small boosts and abort

at shorter return periods. The second indicator measures the efficacy in boosting to larger extremes:

M
Boost = ﬁ z max{max(S, — S,,,0) : X, is a descendant of X, } (®))

m=1

where M is the total number of ensemble members, including all ancestors and all accepted de-
scendants (but not rejects). Fig. 4 shows both performance indicators’ 6-dependance, and con-
firms that an optimal & does exist, in both senses of minimizing L? (which has a broad valley)

and maximizing Boost (which has a relatively narrow peak). Happily, the same 6 is approximately
optimal for both, and L? is not very sensitive to changes in the value by < 2 days. However, the
two targets of precipitation and temperature have slightly different optimal s of 10 and 12 days
respectively, which we will show is consistent with slower ensemble dispersion of temperature

in Fig. 5. Thus it appears that the appropriate target time is not universal but rather depends, at

least weakly, on the choice of target variable.

4.3 Ensemble spreading rate

Finkel and O’Gorman (2024) found that the optimal 6 was well estimated as the time 73 /g
when a perturbed ensemble disperses to a fraction 3 /8 of its saturation dispersion. Having mea-
sured the optimal AST by grid search in the previous section, we now compare it with 3 3, which

is computed by the following branching procedure (same as in Finkel and O’Gorman (2024)):

1. Draw an initial condition X (0) ~ p,, in our case a snapshot from the long DNS run plus
some additional spinup of 60 days for good measure.
2. Split X (0) into B branches (each with its own random seed for SPPT) and let them evolve

independently for Ty days. Here we set B = 12 to balance cost with statistical confidence
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Figure 4. TEAMS performance diagnostics as functions of advance split time. We deployed TEAMS on
two different target variables (left: precipitation and right: temperature) with a sequence of advance split
times (ASTs) of 0, 4, 6, 8, 10, 12, 14, 16, 20, and 24. Each case was repeated 48 times with different random
seeds. The finer AST spacing of 2 days between 6 and 16 was done after an initial sweep with 4-day spacing
to identify a broadly optimal region. Optimality is assessed by the two diagnostics shown: (top) L? error
between TEAMS and DNS return level curves, equivalent to the root-mean-square distance between red and
black curves in Fig. 2 (smaller is better); and (bottom) the Boost, defined as the maximum increase in severity
between an ensemble member and all of its descendants (or zero if all its descendants are less severe), which
is averaged over all members in a TEAMS run. Both L? and Boost are defined for a single TEAMS run, and
there are 48 runs performed at each AST, whose (mean, median, interquartile range) are plotted as (black

lines, red lines, and red bands) respectively.
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in estimating root-mean-squared error (RMSE) as defined below. We set Ty = 50 days
which is long enough for the RMSE to saturate (it is similar to the TEAMS time horizon,

T = 60 days).

. Continue a simulation from X (0) for an equilibration interval T, and split X (T;) into

B more branches.

. Repeat step 3 (but starting from the most recent split time) W times to create W ensem-

bles, resulting in a dataset
{Xpu() 1 1<b<B1<w<W,0<r<Tg) (6)

(W stands for “whorls”, a botanical term for a point on a stem from which multiple branches
emanate). We set W = 20. r denotes the time since the split, equivalent to t — (w —

)Ty, for the wth whorl.

. Measure the ensemble dispersion from each whorl w = 1, ..., W in terms of the RMSE

as a function of the elapsed time r since the split:

B 2
RMSE, () = % 3 D<Xw’b(r), waﬂ(r)> %
b=1

Here X, , refers to the bth branch from the wth whorl, while b = 0 denotes the “tree trunk”
which spawns these branches. The distance function D(X, Y) is Euclidean distance in the
physical field of interest calculated over a region, chosen here to be the entire Northern
Hemisphere. Other distance metrics could be used, for example by restricting to the re-
gion around the target location, which would be possibly more relevant to the event of in-
terest but also more noisy. Fig. 5 displays the results of one whorl from this branching ex-
periment, in the form of local precipitation and temperature timeseries (top row) and RM-
SEs of these two fields, respectively (bottom row). Individual branches, plotted in red, show

the impact of different stochastic parameterization realizations.

. Because different initial conditions spread at different rates, RMSE,,, might have differ-

ent shapes for different whorls, but each will eventually saturate to the same asymptotic
value. The RMS of RMSE,, across all ws—i.e., 4/ % > RMSEi}, denoted RMSE(r)—
is displayed as purple lines in Fig. 5c,d, and we estimate the asymptotic RMSE by its fi-
nal 15-day average. Define the fractional saturation time 7., as the time s at which RMSE(r)
reaches a fraction e of the asymptotic value. Following the prescription from Finkel and
O’Gorman (2024), 5 should be approximated by 73 := % S t3/8.- This is not ex-
actly the same as the time that RMSE(r) crosses the threshold, but they are practically in-

distinguishable for the full-NH Euclidean distance (smaller-area distances lead to a dis-
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crepancy). A benefit of averaging times first instead of RMSEs first is that it gives a straight-
forward estimate of standard deviation of #; /g ACTOSS WS, which is denoted in the legends

along with the mean [#3 3 = @ + std(t33)].

For precipitation, we find 73,3 = 6.3 + 1.0 days, and for temperature 10.4 + 0.7 days. A
longer timescale for temperature is not surprising given that temperature is a smoother field than
precipitation, and it correctly predicts that a longer 6 is optimal for temperature as compared to
precipitation. Comparing to the grid search over AST in Fig. 4, @ systematically underestimates
the optimal AST: for precipitation, % = 6.3 days compared to an optimal time of 10 days, and
for temperature, @ = 10.4 days compared to an optimal time of 12 days. In both cases, the
optimal time roughly matches % We used the full Northern hemisphere to estimate ensemble
dispersion which is roughly analagous to what we considered in the Lorenz 96 system and re-
duces noise. However, the bias reduces with smaller-area averages, with @ = 85and 11.7
days respectively when restricting the averaging region for the distance metric D to 40° X 10°
lonxlat centered on the target. This suggests that more localized measurements of ensemble dis-
persion may be needed when the domain is higher-dimensional. These are all important nuances
to bear in mind when expanding to other applications, especially those with different spatiotem-

poral scales such as mesoscale convective systems.

5 Conclusion

Extreme weather events have long been recognized as a major challenge for risk assess-
ment, which motivates the use and development of suitable rare event algorithms: protocols to
perturb simulations, over-sample the extremes, and then correct for the statistical bias introduced.
The subclass of extremes which are sudden and transient resist standard rare event algorithms
by simply running their course before the perturbations can take effect. We augmented a stan-
dard algorithm, adaptive multilevel splitting (AMS) with early perturbations, resulting in “try-
ing early AMS” (TEAMS), and after developing the method on the benchmark Lorenz-96 sys-
tem in Finkel and O’Gorman (2024), here we have successfully applied the algorithm to a three-
dimensional model of the atmosphere’s general circulation, extending the estimable range of re-
turn periods to 100 — 150 years with only ~ 20 years of simulation and 300 — 500 years with

only ~ 40 years of simulation.

The key hyperparameter of this algorithm is the advance split time: how far ahead of time

to perturb a simulated extreme event to optimally sample the range of how much more or less se-
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Figure 5. Ensemble dispersion. (a) Precipitation over the target region during a 50-day stretch. The con-
trol simulation (black) and 12 perturbed ensemble members (red) are all subject to different realizations of
stochastic parameterization (SPPT) with the same statistics; see text for details. (c) Area-weighted Euclidean
distance (RMSE) between each realization and the control (red) for the same time span, using the full north-
ern hemisphere precipitation field. The RMSE over different initial conditions (i.e. different whorls) is shown
in purple (denoted RMSE(r) in the text). The long-term average, or “saturation RMSE”, is shown as a hori-
zontal black dashed line. The horizontal gray threshold marks the fraction 3/8 of saturation, and the vertical
gray line with error bars delineates the mean and standard deviation of 7 5, the threshold-crossing time,

across whorls as @ + std(z, /8)- (b,d): Same as (a,c), but using surface temperature instead of precipitation

fields.
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vere that event could have been. Exhaustive experiments with Lorenz-96 informed a heuristic
rule to set the advance split time based on ensemble dispersion rates (Finkel & O’Gorman, 2024),
and here we verified the same rule as a good approximation to the optimal choice in this much
more complex, albeit idealized, atmospheric model, and for two different target variables: heavy
precipitation and heat extremes. This first evidence of generalizability leads us to conjecture that

a similar rule holds in more complex, realistic GCMs.

There are several wide avenues for advancing this research. An obvious next step is do test-
ing at higher resolution and/or more realistic GCMs or regional climate models. However, al-
gorithmic improvements are still needed for broad application. In particular, we need improved
guidance in how to choose the time horizon T and the population control parameters: ancestor

pool N, killing rate K, and computational budget M, ... More interestingly, the appropriate choice

ax-*
of perturbation space is quite open-ended as a general question, especially when stochastic pa-
rameterization is not intrinsically a part of the model. Others have conjectured that the pertur-
bation space is inconsequential provided the magnitude is small (Ragone et al., 2018), but this
remains to be tested, as we are doing in separate ongoing work. Moreover, utilizing determin-
istic optimization to design a more structured sequence of perturbations (in a similar fashion as

Farazmand and Sapsis (2017) and Sapsis (2020)) may be a route toward more efficient sampling

strategies.

Another immediate goal—beyond our current scope of establishing the TEAMS algorithm,
but more and more relevant with more realistic models—is to physically interpret the algorithm’s
output, which differs from typical datasets in that ensemble members are weighted unequally and
grouped into “families”. Spatial composites of relevant fields, like column water vapor, can be
extracted by applying the weighted-average formula (2) pointwise to maps, which has been done
for seasonal heat extremes in, e.g., Ragone et al. (2018); Ragone and Bouchet (2021); Miloshe-
vich et al. (2024); Le Priol et al. (2024). In particular, visualizing differences between an ances-
tor and its descendants in this way will reveal mechanisms for physical drivers that strengthen
or dampen extremes, and can be compared with traditional perturbations used in numerical weather
prediction like Lyapunov, singular, and bred vectors (e.g., Norwood et al., 2013; Palmer & Zanna,
2013). The value added by rare event algorithms is the chance to greatly enhance statistical con-

fidence in composite maps and other diagnostics.

Overall, we wish to convey simultaneous signals of caution and optimism. “Extreme weather

events” do not comprise a monolithic category, but are tremendously diverse in spatiotemporal
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scales, and one rare event algorithm off the shelf cannot be expected to successfully sample all
of them. Here we have identified one particular dimension of challenge—relative timescales of
ensemble dispersion and the event itself—and successfully remedied it using insight from a sim-
pler model. The specific algorithm, and the general strategy for leveraging a model hierarchy,
will help guide the community’s continued exploration of extreme events, a growing frontier of

climate research.

Data availability statement

The code to run the climate model and the rare event algorithm is publicly accessible in

two repositories:

1. “jf_conv_gray_smooth” (justinfocus12, 2025, available at https://doi.org/10.5281/

zenodo . 16878347) contains the core Fortran model code

2. “TEAMS” (justinfocus12, n.d., available at https://doi.org/10.5281/zenodo.16878339)

contains Python code for the rare event algorithm that wraps the Fortran code as well as

some other example systems (including Lorenz-96).

Interested readers should contact J. F. (ju26596@mit . edu) for guidance on using and extend-

ing the code.

Conflict of interest

The authors declare no conflicts of interest relevant to this study.

Acknowledgments

We thank Judith Berner for assistance with implementing the stochastic parameterization. Com-
putations for this project were performed on the MIT Engaging cluster. This research is part of
the MIT Climate Grand Challenge on Weather and Climate Extremes. Support was provided by

Schmidt Sciences, LLC.

References

Anderson, J. L., etal. (2004). The new gfdl global atmosphere and land model am2—Im?2:
Evaluation with prescribed sst simulations.  Journal of Climate, 17(24), 4641 - 4673.

Retrieved from https://journals.ametsoc.org/view/journals/clim/17/24/

21—



jcli-3223.1.xml doi: 10.1175/JCLI-3223.1

Au, S.-K., & Beck,J. L.  (2001).  Estimation of small failure probabilities in high dimen-
sions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277.
Retrieved from https://www.sciencedirect.com/science/article/pii/

50266892001000194 doi: https://doi.org/10.1016/S0266-8920(01)00019-4

Berner, J., Fossell, K. R., Ha, S.-Y., Hacker, J. P., & Snyder, C. (2015). Increasing the
skill of probabilistic forecasts: Understanding performance improvements from
model-error representations.  Monthly Weather Review, 143(4), 1295 - 1320.  Re-
trieved from https://journals.ametsoc.org/view/journals/mwre/143/4/

mwr-d-14-00091.1.xml doi: 10.1175/MWR-D-14-00091.1

Berner, J., Shutts, G. J., Leutbecher, M., & Palmer, T. N.  (2009). A spectral stochastic ki-
netic energy backscatter scheme and its impact on flow-dependent predictability in the
ecmwf ensemble prediction system.  Journal of the Atmospheric Sciences, 66(3), 603
- 626. Retrieved from https://journals.ametsoc.org/view/journals/atsc/
66/3/2008jas2677.1.xml doi: 10.1175/2008JAS2677.1

Bloin-Wibe, L., Noyelle, R., Humphrey, V., Beyerle, U., Knutti, R., & Fischer, E.

(2025). Estimating return periods for extreme events in climate models through
ensemble boosting. EGUsphere, 2025, 1-40. Retrieved from https://
egusphere.copernicus.org/preprints/2025/egusphere-2025-525/ doi:
10.5194/egusphere-2025-525

Farazmand, M., & Sapsis, T. P.  (2017). A variational approach to probing extreme events
in turbulent dynamical systems. Science Advances, 3(9), e1701533. Retrieved from
https://www.science.org/doi/abs/10.1126/sciadv.1701533 doi: 10.1126/
sciadv.1701533

Finkel, J., & O’Gorman, P. A.  (2025). Boosting ensembles for statistics of tails at condi-
tionally optimal advance split times. Retrieved from https://arxiv.org/abs/2507
.22310

Finkel, J., & O’Gorman, P. A. (2024). Bringing statistics to storylines: Rare event sampling
for sudden, transient extreme events. Journal of Advances in Modeling Earth Systems,
16(6), €2024MS004264. Retrieved from https://agupubs.onlinelibrary.wiley
.com/doi/abs/10.1029/2024MS004264 (e2024MS004264 2024MS004264) doi:
https://doi.org/10.1029/2024MS004264

Frierson, D. M. W,, Held, I. M., & Zurita-Gotor, P. ~ (2006). A gray-radiation aquaplanet

22—



497

moist gcm. part i: Static stability and eddy scale. Journal of the Atmospheric Sciences,
63(10), 2548 - 2566. Retrieved from https://journals.ametsoc.org/view/
journals/atsc/63/10/jas3753.1.xml doi: 10.1175/JAS3753.1

Gessner, C. (2022). Physical storylines for very rare climate extremes (Unpublished doctoral
dissertation). ETH Zurich.

Gessner, C., Fischer, E. M., Beyerle, U., & Knutti, R. (2021). Very rare heat extremes:

Quantifying and understanding using ensemble reinitialization. Journal of Cli-
mate, 34(16), 6619 - 6634. Retrieved from https://journals.ametsoc.org/
view/journals/clim/34/16/JCLI-D-20-0916.1.xml doi: 10.1175/

JCLI-D-20-0916.1
Held, I. M. (2005). The gap between simulation and understanding in climate model-
ing. Bulletin of the American Meteorological Society, 86(11), 1609 - 1614. Re-

trieved from https://journals.ametsoc.org/view/journals/bams/86/11/

bams-86-11-1609.xml doi: 10.1175/BAMS-86-11-1609

Huang, X., Chen, J., & Zhu, H. (2016). Assessing small failure probabilities by ak—ss:
An active learning method combining kriging and subset simulation. Structural Safety,
59, 86-95. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0167473016000035 doi: https://doi.org/10.1016/j.strusafe.2015.12.003

justinfocus12. (n.d.). justinfocusi2/teams: Initial release 2320 for submission 2321.

justinfocus12. (2025, August). justinfocusl2/jf_conv_gray_smooth: Initial release for sub-
mission. Zenodo. Retrieved from https://doi.org/10.5281/zenodo. 16878347
doi: 10.5281/zenodo.16878347

Kahn, H., & Harris, T. E.  (1951). Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series, 12, 27-30.

Krakauer, N. Y. (2024). Itis normal: The probability distribution of temperature extremes.
Climate, 12(12). Retrieved from https://www.mdpi.com/2225-1154/12/12/204
doi: 10.3390/cli12120204

Le Priol, C., Monteiro, J. M., & Bouchet, F. (2024, oct). Using rare event algorithms to un-
derstand the statistics and dynamics of extreme heatwave seasons in south asia.  Envi-
ronmental Research: Climate, 3(4), 045016. Retrieved from https://dx.doi.org/
10.1088/2752-5295/ad8027 doi: 10.1088/2752-5295/ad8027

Lestang, T., Bouchet, F., & Lévéque, E.  (2020). Numerical study of extreme mechanical

force exerted by a turbulent flow on a bluff body by direct and rare-event sampling

23—



514

515

516

techniques. Journal of Fluid Mechanics, 895, A19. doi: 10.1017/jfm.2020.293

Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C., & Bouchet, F. (2018, Apr). Comput-
ing return times or return periods with rare event algorithms. Journal of Statistical
Mechanics: Theory and Experiment, 2018(4), 043213. Retrieved from https://

doi.org/10.1088/1742-5468/aab856 doi: 10.1088/1742-5468/aab856

Mahesh, A., Collins, W., Bonev, B., Brenowitz, N., Cohen, Y., Elms, J., ... Willard, J.
(2024). Huge ensembles part i: Design of ensemble weather forecasts using spherical
fourier neural operators. Retrieved from https://arxiv.org/abs/2408.03100

Mahesh, A., Collins, W., Bonev, B., Brenowitz, N., Cohen, Y., Harrington, P., ... Willard, J.
(2024). Huge ensembles part ii: Properties of a huge ensemble of hindcasts generated
with spherical fourier neural operators.  Retrieved from https://arxiv.org/abs/

2408.01581

Miloshevich, G., Lucente, D., Yiou, P., & Bouchet, F. (2024). Extreme heat wave sampling
and prediction with analog markov chain and comparisons with deep learning.  Envi-
ronmental Data Science, 3, €9.

Norwood, A., Kalnay, E., Ide, K., Yang, S.-C., & Wolfe, C. (2013, Jun). Lyapunov, singular
and bred vectors in a multi-scale system: an empirical exploration of vectors related
to instabilities. Journal of Physics A: Mathematical and Theoretical, 46(25), 254021.
Retrieved from https://dx.doi.org/10.1088/1751-8113/46/25/254021 doi:
10.1088/1751-8113/46/25/254021

O’Gorman, P. A., & Schneider, T.  (2008).  The hydrological cycle over a wide range of
climates simulated with an idealized gcm. Journal of Climate, 21(15), 3815 - 3832.
Retrieved from https://journals.ametsoc.org/view/journals/clim/21/15/
2007jcli2065.1.xml doi: 10.1175/2007JCLI2065.1

O’Gorman, P. A., & Schneider, T.  (2009).  Scaling of precipitation extremes over a wide
range of climates simulated with an idealized gecm. Journal of Climate, 22(21), 5676 -
5685. Retrieved from https://journals.ametsoc.org/view/journals/clim/
22/21/2009jc1i2701.1.xml doi: 10.1175/2009JCLI2701.1

Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G.J., ...
Weisheimer, A. (2009). Stochastic parametrization and model uncertainty. ECMWF
Technical Memoranda.

Palmer, T. N., & Zanna, L. (2013, Jun). Singular vectors, predictability and ensemble fore-

casting for weather and climate. Journal of Physics A: Mathematical and Theoretical,

24—



46(25),254018. Retrieved from https://dx.doi.org/10.1088/1751-8113/46/

25/254018 doi: 10.1088/1751-8113/46/25/254018

Ragone, F., & Bouchet, F. (2021). Rare event algorithm study of extreme warm
summers and heatwaves over europe. Geophysical Research Letters, 48(12),
€2020GL091197. Retrieved from https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2020GL091197 (e2020GL091197 2020GL091197) doi:
https://doi.org/10.1029/2020GL091197

Ragone, F., Wouters, J., & Bouchet, F. (2018). Computation of extreme heat waves in cli-
mate models using a large deviation algorithm. Proceedings of the National Academy
of Sciences, 115(1), 24-29. Retrieved from https://www.pnas.org/content/115/

1/24 doi: 10.1073/pnas.1712645115

Ragulina, G., & Reitan, T. (2017). Generalized extreme value shape parameter and its nature
for extreme precipitation using long time series and the bayesian approach. Hydrologi-
cal Sciences Journal, 62(6), 863—-879. Retrieved from https://doi.org/10.1080/

02626667.2016.1260134 doi: 10.1080/02626667.2016.1260134

Rolland, J. (2022). Collapse of transitional wall turbulence captured using a rare events algo-

rithm. Journal of Fluid Mechanics, 931, A22. doi: 10.1017/jfm.2021.957

Sapsis, T.P.  (2020).  Output-weighted optimal sampling for bayesian regression and rare
event statistics using few samples. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 476(2234), 20190834. Retrieved from https://
royalsocietypublishing.org/doi/abs/10.1098/rspa.2019.0834 doi: 10
.1098/rspa.2019.0834

Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V., Hegerl, G.,
... Zwiers, F. W. (2017). Understanding, modeling and predicting weather and climate
extremes: Challenges and opportunities. Weather and Climate Extremes, 18, 65-74.
Retrieved from https://www.sciencedirect.com/science/article/pii/
$2212094717300440 doi: https://doi.org/10.1016/j.wace.2017.10.003

Uribe, F., Papaioannou, 1., Marzouk, Y. M., & Straub, D. (2021). Cross-entropy-based
importance sampling with failure-informed dimension reduction for rare event simula-
tion. SIAM/ASA Journal on Uncertainty Quantification, 9(2), 818-847. Retrieved from
https://doi.org/10.1137/20M1344585 doi: 10.1137/20M1344585

Webber, R. J., Plotkin, D. A., O’Neill, M. E., Abbot, D. S., & Weare, J. (2019). Practical rare

event sampling for extreme mesoscale weather.  Chaos: An Interdisciplinary Journal

25—



of Nonlinear Science, 29(5), 053109. Retrieved from https://doi.org/10.1063/1
.5081461 doi: 10.1063/1.5081461

Winget, M., & Persky, A. M. (2022). A practical review of mastery learning. American
Journal of Pharmaceutical Education, 86(10), ajpe8906.  Retrieved from https://
www.sciencedirect.com/science/article/pii/S0002945923007386 doi:
https://doi.org/10.5688/ajpe8906

Wouters, J., & Bouchet, F. (2016, Aug). Rare event computation in deterministic chaotic
systems using genealogical particle analysis. Journal of Physics A: Mathematical and
Theoretical, 49(37), 374002. Retrieved from https://dx.doi.org/10.1088/1751
-8113/49/37/374002 doi: 10.1088/1751-8113/49/37/374002

Zhang, B.J., Sahai, T., & Marzouk, Y. M.  (2022). A koopman framework for rare event
simulation in stochastic differential equations. Journal of Computational Physics, 456,
111025. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0021999122000870 doi: https://doi.org/10.1016/j.jcp.2022.111025

Zuckerman, D. M., & Chong, L. T. (2017). Weighted ensemble simulation: Review of
methodology, applications, and software. Annual Review of Biophysics, 46(1), 43-57.
Retrieved from https://doi.org/10.1146/annurev-biophys-070816-033834

(PMID: 28301772) doi: 10.1146/annurev-biophys-070816-033834

26—



