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The Supplementary Materials (SM) is organized as follows: First, we discuss code and data 
availability (SM A), including links to multiple repositories to reproduce the different ML-based 
closures and climate simulations discussed in the manuscript. Then, we present the characteris-
tics of the emulated mapping (SM B1), derive the input transformations used in the manuscript 
(SM B2), the output transformations tested in this SM (SM B3), and discuss possible vertical 
coordinate transformations (SM B4). We provide a guide to find new climate-invariant trans-
formations in SM B5. SM C details the practical implementation of our climate-invariant ML 
workflow. F inally, w e p resent s upplementary r esults i n S M D , i ncluding t he H ellinger and 
Jensen-Shannon distances between input distributions (SM D1), the learning curves of climate-
invariant models across climates and geographies (SM D2), the generalization skill of climate-
invariant NNs near the surface (SM D3), and three methods to visualize the “raw-data” and 
climate-invariant mappings and compare them in the cold (-4K) and warm (+4K) climates (SM 
D4).

A. Code and Data Availability
The code used to process data, train models, and produce this manuscript’s figure can be found 
in the following Github repository: https://github.com/tbeucler/CBRAIN-CAM, 
which is archived using Zenodo https://zenodo.org/record/8140413 [97]. This
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repository includes a minimal reproducible example on how to train a climate-invariant neu-
ral network and verify its improved generalization ability: https://colab.research.
google.com/github/tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_
Guide.ipynb and a notebook to generate all figures in this manuscript requiring model data
https://github.com/tbeucler/CBRAIN-CAM/blob/master/notebooks/tbeucler_
devlog/090_Climate_Invariant_Paper_Figures_v2.ipynb. Both scripts rely
on the manuscript’s accompanying data, archived in the following Zenodo repository: https:
//doi.org/10.5281/zenodo.8140536 [98].

The above Github repository is forked from (and builds upon) Stephan Rasp’s CBRAIN
repository https://github.com/raspstephan/CBRAIN-CAM, also archived using Zen-
odo https://zenodo.org/record/1402384#.YajSg9BKiUk [99]. This repository
contains a quickstart guide https://github.com/raspstephan/CBRAIN-CAM/blob/
master/quickstart.ipynb to preprocess raw climate model output, train a neural net-
work and benchmark it.

As described in Section 2, we use data from eight climate simulations using three climate
models (SPCAM3, SPCESM2, and SAM) to form our training, validation, and test sets. We
report the exact characteristics of the splits in Tab S2 and information to re-generate the full
simulation output below.

SPCAM3 The codebase for running the “SPCAM3” simulation is the same employed by
[29], which is archived at https://gitlab.com/mspritch/spcam3.0-neural-net/
-/tree/sp-diagnostic for the (+0K) simulation. The sea surface temperature is uni-
formly cooled by 4K to produce the (-4K) simulation and uniformly warmed by 4K to pro-
duce the (+4K) simulation. Raw output of the (+0K) simulation can be found at https:
//zenodo.org/record/1402384#.YaUCsdDMI-w [99]. The full simulations output,
which is several TB, is archived on the GreenPlanet cluster at UC Irvine and available upon
request.

SPCESM2 The codebase for running the “SPCESM2” simulations is the same employed
by [100], which is archived at https://github.com/mspritch/UltraCAM-spcam2_
0_cesm1_1_1; this code was in turn forked from a development version of the CESM1.1.1 lo-
cated on the NCAR central subversion repository under tag spcam_cam5_2_00_forCESM1_
1_1Rel_V09, which dates to February 25, 2013. The full simulations output, which is several
TB, is also archived on the GreenPlanet cluster at UC Irvine and available upon request. We ad-
ditionally archived the input data and run scripts necesary to re-run all three simulations as part
of the manuscript’s accompanying data using Zenodo https://zenodo.org/record/
5775541#.YbeMHNDMKUl [98].

SAM The codebase for running the “SAM” simulations is the same employed by [54]. The
initial sounding, meridional surface temperature profile, and source code to re-run the sim-
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ulation can be found at https://zenodo.org/record/4118346#.YaT_WtBKg-w
[101]. To produce the (+0K) simulation, the initial sounding and surface temperature profiles
are both uniformly warmed by 4K. The output from the SAM simulations, which is several TB,
is archived at MIT and is available upon request.

B. Feature Transformations

B1. Mapping
In this subsection, we present the characteristics of the emulated mapping, highlighting the
differences between the superparameterized models (SPCAM3, SPCESM2) and the storm-
resolving model (SAM). In both cases, the input vector x encodes the large-scale (≈100km)
climate state:

x =


[
q (p) T (p) ps S0 SHF LHF

]T
(SPCAM3, SPCESM2)[

qnp (p) T (p) dEquator

]T
(SAM)

(1)

where q (p) is the vertical profile of specific humidity in units of kg/kg (written as a function of
the background pressure coordinate p in units of Pa), T (p) is the temperature’s vertical profile
in units of K, ps is surface pressure in units Pa, S0 is solar insolation in units of W/m2, SHF
is surface sensible heat flux in units W/m2, LHF is surface latent heat flux in units of W/m2,
qnp (p) is the vertical profile of non-precipitating water concentration in units of kg/kg, and
dEquator is the distance to the Equator, which is used as a proxy for solar insolation in the map-
ping learned for SAM. The output vector y groups subgrid-scale thermodynamic tendencies:

y =


[
Lvq̇ (p) cpṪ (p) cplw (p) cpsw (p)

]T
(SPCAM3, SPCESM2)[

Lvq̇np (p) ḢL (p)
]T

(SAM)
(2)

where Lv in units of J kg−1 is the latent heat of vaporization of water in standard conditions, 
q̇ (p) is the subgrid moistening vertical profile, c p in units of J kg−1 K −1 is the specific heat 
of dry air at constant pressure in standard atmospheric conditions, Ṫ (p) is the total subgrid 
heating vertical profile ( including s ubgrid r adiation), lw (p) i s t he s ubgrid l ongwave radia-
tive heating vertical profile, sw (p) is the subgrid shortwave radiative heating vertical profile, 
q̇np (p) is the non-precipitating water condensation vertical profile, and Ḣ 

L  (p) is the subgrid 
time-tendency of the liquid/ice static energy vertical profile. Following [60], all components 
of the output vector y are mass-weighted and vertically integrated within each vertical layer 
to yield energy flux units ( W/m2). Assuming vertical profiles have Np  vertical levels, x is of 
length (2Np + 4) for SPCAM3 and SPCESM2, and of length (2Np + 1) for SAM. y is of length 
4Np for SPCAM3 and SPCESM2, and of length 2Np for SAM.

https://zenodo.org/record/4118346#.YaT_WtBKg-w


B2. Physically-Based Input Transformations
In Fig S2, we compare three transformation options for each input, whose univariate PDFs are
depicted in Fig S2: No transformation (top), our most successful transformation (bottom), and
our second best transformation (middle). After defining our second best input transformations
(B2a), we delve into the details of our relative humidity (B2b) and plume buoyancy (B2c)
transformations before discussing the other inputs’ distribution shift (B2d).

B2a. Second Best Input Transformations

Along the way to our optimal feature transformations, we explored candidate options that
proved second best. For completeness these are reviewed first in the SM.

Saturation Deficit: We explored saturation deficit but found it did not lead to climate invari-
ance. Similar to q, saturation deficit (Fig S2a, middle) still has a corresponding expansion of the
PDF with warming as a result of the Clausius-Clapeyron relation. It is defined as the amount by
which the water vapor concentration must be increased to achieve saturation without changing
the environmental temperature and pressure:

q̃deficit (T, p)
def
= qsat (T, p)− q, (3)

where qsat (T, p) is the saturation specific humidity.
In contrast, the relative humidity transformation q̃RH (p)

def
= RH(q, T, p) (Fig S2a, bot-

tom) results in a climate-invariant PDF, as evidenced by PDFs that mostly overlap across all
three climates.

Temperature minus Near-Surface Temperature: Assuming that the temperature’s PDF shift
with warming is almost uniform with height, we can derive an approximate invariant by sub-
tracting the temperature at all levels T (p) from the near-surface temperature T (pNS):

T̃from NS (p)
def
= T (pNS)− T (p), (4)

where pNS is the lowest atmospheric pressure level see (Fig S2b, middle). However, this linear
transformation fails in the upper atmosphere, especially near the tropopause where temperatures
are approximately invariant with warming [78, 79, 80] and therefore decoupled from surface
temperature changes. This is why the buoyancy of a moist static energy-conserving plume:

T̃buoyancy (p)
def
= Bplume (qNS,T, p) , (5)

where qNS = q(pNS) is the near-surface specific humidity, yields approximate climate invariance
(Fig S2b, bottom), unlike the temperature minus near surface temperature transformation.



Scaling Latent Heat Fluxes by Near-Surface Specific Humidity: To address the increase of
LHF with warming, we scale LHF by near-surface specific humidity q (pNS) (Fig S2c, middle):

˜LHFq
def
=

LHF

Lv max {ϵq, q (pNS)}
, (6)

where ϵq is a user-chosen parameter that we set to 10−4 to avoid division by zero. While better
than directly using LHF, this transformation fails for very dry atmospheres when the latent heat
flux is negative, e.g. in polar oceans where atmospheric water vapor may be condensing on the
surface, or when the near-surface specific humidity is very small, e.g. in subtropical regions.
This is why scaling LHF using the near-surface saturation deficit (Fig S2c, bottom):

˜LHF∆q
def
=

LHF

Lv max {ϵq, qsat [T (pNS) , pNS]− q (pNS)}
. (7)

yields better generalizability. While both the Jensen-Shannon and Hellinger distances would
suggest that ˜LHF∆q is a slightly less good transformation than ˜LHFq, the ˜LHF∆q transfor-
mation leads to improved generalization performance compared to ˜LHFq (not shown). This
confirms that only considering the PDF distances is not always sufficient to find the optimal
transformations (discussed in SM B4).

B2b. Relative Humidity

Relative humidity (RH) provides our optimal transformation for the specific humidity inputs.
RH is defined as the ratio of the partial pressure of water vapor e(p, q) to its saturation value
esat (T ), and can be expressed analytically:

RH
def
=

e(p, q)

esat (T )

q≪1
≈ Rv

Rd

pq

esat (T )
, (8)

where Rv ≈ 461J kg−1 K−1 is the specific gas constant for water vapor, Rd ≈ 287J kg−1 K−1 is
the specific gas constant for dry air, p (in units Pa) is the total atmospheric pressure, q (in units
kg/kg) is specific humidity, and esat (T ) (in units Pa) is the saturation pressure of water vapor,
whose analytic expression in our case is given below. Consistent with Eq 8, the saturation
specific humidity qsat corresponding to RH = 1, is

qsat (T, p) =
Rdesat (T )

Rvp
. (9)

SAM’s single-moment microphysics scheme [102], which is also used in the SPCAM3 and
SPCESM2 simulations, partitions water between the liquid and ice phases using a weight ω
that is a linear function of the absolute temperature:

ω
def
=

T − T00

T0 − T00

. (10)



Under the assumptions of this microphysics scheme, the saturation pressure of water vapor
can then be found by integrating the Clausius-Clapeyron equation with respect to temperature,
expressed analytically as:

esat (T ) =


eliq (T ) T > T0

eice (T ) T < T00

ωeliq (T )+ (1 − ω) eice (T ) T ∈ [T00, T0]

, (11)

where T0 = 273.16K and T00 = 253.16K. In Eq 11, as temperature increases, the saturation
pressure of water vapor goes from the saturation vapor pressure with respect to liquid eliq, to the
saturation vapor pressure with respect to ice eice. These are given by the following polynomial
approximations:

eliq (T ) = 100Pa×
8∑

i=0

aliq,i [max (−193.15K, T − T0)]
i , (12)

where aliq is a vector of length 9 containing nonzero polynomial coefficients. The polynomial
approximation for eice, with the same temperature switches as Eq 11, is:

eice (T ) =


eliq (T )

100Pa× {cice,1 + C (T ) [cice,4 + cice,5C (T )]}
100Pa×

∑8
i=0 aice,i (T − T0)

i

, (13)

where C (T ) is a ramp function of temperature given by:

C (T )
def
= max (cice,2,T − T0) , (14)

and (aice, cice) are vectors of length 9 and 5 containing nonzero elements, respectively. Be-
tween temperatures of T00 and T0, the saturation pressure of water vapor is a weighted mean of
eliq and eice. The reader interested in the numerical details of this transformation is referred to
our implementation of relative humidity at https://colab.research.google.com/
github/tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_Guide.ipynb.

B2c. Plume Buoyancy

Plume Buoyancy (Bplume) is our most successful transformation for the temperature inputs. 
Buoyancy is defined as the upward acceleration exerted upon parcels by virtue of the density 
difference between the parcel and the surrounding air of the atmospheric column (e.g., [103]). 
Because our ML model’s inputs represent the large-scale thermodynamic state, the ML model
does not have information about the storm-scale buoyancy field, and we must rely on idealized 
approximations to estimate the buoyancy that a plume would have for given specific humidity
and temperature profiles. To be consistent with the model’s conserved quantities [102], we
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derive a simple buoyancy metric based on a moist static energy (h) conserving plume below
following similar derivations in [82] and [104]. We refer the reader interested in the numerical
details of this transformation to https://colab.research.google.com/github/
tbeucler/CBRAIN-CAM/blob/master/Climate_Invariant_Guide.ipynb.

For purposes of this transformation, we omit virtual temperature effects and condensate
loading (effects of the environmental water vapor on heating/moisture sink are being estimated
separately). Thus the parcel buoyancy is simply proportional to the relative difference between
its temperature Tpar and the environmental temperature T :

Bplume ≈ g
Tpar − T

T
, (15)

where g is the gravity constant. Further assuming that the plume is non-entraining, obeys hy-
drostatic balance, and lifts parcels from the near-surface, the lifted parcel’s moist static energy
is conserved and equal to its near-surface value (at pressure pNS:

hpar ≈ h (pNS)

def
= Lvq (pNS) + cpT (pNS) ,

(16)

where we have used the environmental moist static energy’s definition:

h
def
= Lvq + cpT + gz, (17)

where z is geopotential height, and we neglected z (pNS) as the near-surface is close to the
surface by definition. To express the parcel’s buoyancy as a function of the environmental
thermodynamic state, we finally assume that the parcel is saturated (not necessarily true close
to the surface), and that the thermodynamic differences between the parcel and the environment
are small, which allows us to linearize the Clausius-Clapeyron equation about the environmental
temperature:

Tpar − T
Claus.−Clap.

≈
(
∂T

∂q∗

)
T,p

(qsat,par − qsat)

=
RvT

2

Lvqsat

(qsat,par − qsat)

=
RvT

2

L2
vqsat

[hpar − hsat − cp (Tpar − T )] .

(18)

Using Eq 18 to write Tpar − T as a function of the environmental thermodynamic state and
substituting the resulting expression into Eq 15 yields an estimation of plume buoyancy from
(q, T, p):

Bplume(q, T, p) =
g [hpar − hsat (q, T, p)]

κ (T, p)× cpT
, (19)
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where the parcel’s moist static energy is expressed as a function of near-surface (q, T ) in Eq 16,
the environmental saturated moist static energy in pressure coordinates is defined as:

hsat (q, T, p)
def
= Lvqsat (T, p)+ cpT + gz (q, T, p), (20)

and we have introduced the dimensionless factor:

κ (T, p) = 1 +
L2
vqsat (T, p)

RvcpT
2 . (21)

Note that in pressure coordinates, we calculate the geopotential height by vertically inte-
grating the hydrostatic equation after using the ideal gas law:

z (q, T, p) =

∫ pNS

p

dp′
T (p′)

gp′
{Rd + [Rv −Rd] q (p

′)} . (22)

B2d. Sensible Heat Fluxes and Surface Pressure

In this appendix, we discuss the univariate PDFs of the two inputs we did not transform in the
main manuscript (see Section 3) in Fig S3 for both super-parameterized models and all three
surface temperatures (-4K, +0K, and +4K). The PDF of sensible heat fluxes changes very little
with warming. There is a slight expansion of the left tail of the surface pressure PDF with
warming as the most extreme low-pressure systems become more intense, but we hypothesize
that these changes are small enough not to require a dedicated input transformation.

B3. Output Transformation
B3a. Theory

In contrast to input transformation, transforming our ML models’ outputs, namely subgrid ther-
modynamics, only marginally improves the models’ ability to generalize. In the absence of
physical theory on how the full vertical profile of subgrid thermodynamics changes with warm-
ing, we place ourselves in an idealized scenario:

Assuming we know how the outputs’ marginal PDF changes with warming, can we help our
ML models generalize via output transformation?

We note that assuming knowledge of how the marginal (univariate) PDFs (or equivalently
the CDF) of convective heating and moistening change with warming is more realistic than
assuming full knowledge of how their joint PDFs change with warming. This knowledge could
come from e.g. convection theory (e.g., [73]) or shorter simulations than those required to train
a subgrid closure. Under this assumption, a natural transformation is the outputs’ cumulative
distribution function (CDF):

ỹ = CDF (y). (23)



In essence, we are assuming that the mapping is more likely to be invariant in quantile than
in physical space, which is a common practice when debiasing the outputs of climate models
referred to as quantile mapping (e.g., review by [105]). In practice, we test two distinct methods
for transforming the outputs using their CDFs and report the results for SPCAM3 aquaplanet
simulations in SM B2b.

Quantile mapping after training: The first method is to transform the ML model’s input
during training, and then transform the ML model’s output after training. This is akin to stan-
dard, post-hoc, quantile mapping. In the particular case of trying to generalize from a (-4K) cold
simulation to a (+4K) warm simulation, the entire transformation to yield outputs in physical
units can be mathematically written as:

y 7→ CDF−1
+4K [CDF−4K (y)] , (24)

where for simplicity but without loss of generality, we have considered a singular input y whose 
CDF is CDF−4K in the (-4K) cold simulation and CDF+4K in the (+4K) warm simulation.

Quantile mapping before training: The second method is to transform the ML model’s out-
put before training. In that case, we directly train the ML model to predict ỹ  = CDF (y) 
as accurately as possible. We then map the output back to physical units using CDF−1 after 
training.

B3b. Results

The two methods to transform outputs presented above are depicted in Fig S4 and the gen-
eralization results presented in Fig S5. Transforming outputs after training slightly improves 
generalization skill (from an overall R2 of 0.58 to 0.62 for the generalization (+4K) set). In 
contrast, transforming outputs before training leads to equally bad results both on the training 
and generalization sets, which is a negative result underlining the challenges of designing the 
appropriate loss function in probability space. A possible solution would be to convert back the 
outputs to physical space before feeding them to the loss function during training, and further 
investigation is required to fully assess the potential and limitations of training these ML models 
in probability space.

B4. Spatial Coordinate Transformation
Another transformation to consider when input/output variables are functions of spatiotempo-
ral coordinates is coordinate transformation, resulting in a coordinate change. In our specific 
example, it is possible to transform the vertical coordinate, i.e. the hybrid pressure coordinate 
p. Possible transformations include:



1. the temperature (p̃ = T ), e.g. for radiative heating, which tends to vary less in temperature
coordinates [106],

2. the saturation specific humidity (p̃ = qsat) which is consistent with a transformation of the
primitive equations that captures an upward shift of the circulation as the climate warms
[107],

3. the geopotential height or the altitude (p̃ = z), which could more consistently capture
gravity wave propagation,

4. or a coordinate with fixed values for characteristic vertical levels in the atmosphere, such
as the top of the planetary boundary layer or the tropopause [78].

While we were able to transform the vertical coordinate using interpolation functions (not 
shown), the benefits were not visible in our particular c ase. This could be because input trans-
formation already addresses some of the upward shift of convective activity warming, as shown 
by the influence of humidity inputs in Fig S14.

C. Implementation
For reproducibility purposes [108], we now detail the practical implementation of a climate-
invariant ML workflow (see Fig 9), from its overall structure (SM C1) to its benchmarking (SM 
C4) via the characteristics of the multiple linear regressions (MLR, SM C2) and neural networks 
(NN, SM C3) presented in this manuscript.

C1. Overall Workflow
We present three ways to implement physical transformations. The first way is to physically 
transform the inputs/outputs before training. While this option is easiest to implement and de-
bug, it usually comes at the cost of disk space: Every time we try a new transformation, we 
need to duplicate our training/validation/test datasets for all the climates/geographies we are 
interested in, which can quickly be prohibitive when trying multiple transformation combina-
tions.

Therefore, it can be advantageous to transform the input/output variables within the ML 
framework, so that the transformations occur during training. In essence, we are trading disk 
space for computational time. In that spirit, the second method is to transform the inputs/outputs 
via custom layers (e.g., Ch 12 of [70]) in the ML algorithm itself. Since this second method 
tends to substantially slow down training as it adds sequential operations on the GPU, we take 
advantage of the fact that the transformations occur before and after the emulated mapping, and 
propose a third method that can happel in parallel on the CPU: Transforming inputs/outputs 
by customizing the pipeline or “data generator”, which is the algorithm responsible for feeding 
numbers to the ML model after reading the training data files. For each batch, the custom data



generator then transforms inputs before feeding them to the ML algorithm. In our case, note
that we transform outputs independently via quantile mapping (see SM B2).

For the rest of this manuscript, we will train our ML models using custom data genera-
tors: For “raw-data” models, the transformations are set to None (no transformation), while for
“climate-invariant” models, the q transformation is set to q̃RH, the T transformation is set to
T̃buoyancy, and the LHF transformation is set to ˜LHF∆q. For all models, we additionally subtract
the mean from each input before dividing it by its range to feed the ML algorithm floating-point
numbers between (-1) and 1. Note that for each transformation, numbers are “de-normalized”
before the transformation and “re-normalized” after following the normalization procedure de-
scribed in Sec 2.4. Therefore, all transformations are done in physical units while the ML
algorithm is always fed single-precision floating-point numbers in [−1, 1].

For simplicity and building upon previous ML-powered subgrid closures [29, 64, 54], we
use the mean-squared error (MSE) of the prediction in physical units (here W2m−4) as our loss
function. Motivated by the framework presented in Fig 9, we first train MLRs (SM C2) before
training NNs (SM C3) and benchmarking our ML models to quantify their accuracy and ability
to generalize (SM C4).

C2. Multiple Linear Regressions
To use the same data generator for both MLRs and NNs, we implement our MLRs in Tensorflow
2.0 [109] and train them using the Adam optimizer, which builds on stochastic gradient descent
[110]. Training a climate-invariant MLR results in a weight matrix A of size 4Np × (2Np + 4)
and a bias vector b of length 4Np such that:

y ≈ Ax̃+ b, (25)

where stochastic optimization means that there is no unique optimal solution for A and b. We 
train MLRs for 20 epochs using the default Keras learning rate of 0.001 and save the weights 
and biases corresponding to the minimal loss over the validation set.

C3. Neural Network Design
To isolate the effects of physically transforming the NN’s inputs, we fix the hyperparameters 
of all NNs trained in this study, and leave the joint investigation of hyperparameter tuning and 
physical transformations for future work. Informed by [50] and [52], we fix the architecture to 
a multilayer perceptron of 7 layers of 128 neurons separated by Leaky Rectified Linear Unit 
activation functions of slope 0.3, resulting in 122,872 trainable parameters for each NN. We 
implement the SPCAM NNs using Tensorflow 2.0 [109], t rain them for 20 epochs using the 
Adam optimizer with the default Keras learning rate of 0.001 and a default batch size of 1024, 
and save the parameters corresponding to the minimal validation loss.

Following the supplemental material (Sec 2) of [55], some of the hyperparameters used 
for the NNs trained on SAM data are different. The SAM NNs are implemented using PyTorch



1.4.0 [111], have 5 dense layers of 128 neurons each, and use cyclic learning rate [112]: Starting
with an initial learning rate in [2 × 10−4, 2 × 10−3] for the first epoch out of 10, we then reduce
the minimal and maximal learning rates by 10% for the next 6 epochs before further reducing
them by a factor 10 for the last 3 epochs.

For SPCAM and following [34], we augment some of our NNs with BN and DP layers,
more specifically one DP layer before each activation function and a single BN layer before the
first DP layer. Following [37], we use the default DP rate of 30% and the default parameters
of the Keras BN layer that normalize each feature using its mean and standard deviation in a
given batch [36]. Note that we do not adjust the default parameters of DP and BN to optimize
generalization skill as this would require misusing the generalization test set as a validation test.

C4. Benchmarking
We benchmark our ML models using two different metrics: their MSEs and their coefficient of
determination R2, defined for a singular output yk as:

R2 def
= 1−

〈
y2Err,k

〉
samp〈(

yTruth,k − ⟨yTruth,k⟩samp

)2
〉

samp

, (26)

where ⟨·⟩samp is the averaging operator over the samples of interest. For instance, if we want a 
horizontal map of R2, we average samples at a given location over time, while we average over 
time and horizontal space if we want a single R2 value for yk. Similarly, if we want one value 
of MSE per output yk, we only average the MSE over time and horizontal space rather than over 
all outputs, as when calculating the loss function.

While comparing MSE and R2 in the reference and target generalization climates is enough 
to assess generalization skill after training, we are also interested in how a given ML model 
learns to generalize during training. To address that question, we augment our SPCAM ML 
models with a function (technically a “Keras callback” [113]) that calculates the MSE over 
two datasets that correspond to the two generalization experiments at the end of each epoch:
(1) a dataset of different temperature (warm when training on cold, and vice-versa); and (2) a 
dataset of different geography (Earth-like when training on Aquaplanet, and vice-versa). At the 
end of training, we hence obtain three learning curves for each ML model: the validation loss, 
and the loss in the two generalization sets as a function of number of epochs. Note that these 
callbacks are computationally expensive as they require evaluating the ML model over ≈ 100M 
samples at the end of each epoch, which means they should be avoided when purely seeking 
performance, e.g. during hyperparameter tuning.



D. Supplementary Results

D1. Jensen-Shannon Distance between PDFs across Climates
As an alternative to the Hellinger PDF distance, we pick the Jensen-Shannon distance [96]
because it is a symmetric distance (i.e., the arguments’ order does not affect the outcome) that
uses the logarithms of the PDFs, hence giving large weights to the PDFs’ tails that tend to be
particularly problematic for generalization purposes:

JS (p, q)
def
=

√
KL (p, q) + KL (q, p)

2
, (27)

where p and q are the normalized PDFs to compare and KL is the Kullback–Leibler diver-
gence, defined for continuous PDFs as:

KL (p, q)
def
=

∫ 1

0

dx× p (x) ln

[
p (x)

q (x)

]
. (28)

D2. Learning across Climates and Geographies
This section complements Sec 4.2 and confirms that climate-invariant models learn mappings 
that are valid across climates and geographies during training. For this purpose, we track the 
models’ generalizability throughout the training process as explained below.

Fig S7 shows learning curves; the color of each line indicates the dataset the model was 
trained in, while the color of the row indicates the dataset the model was tested in. To gain intu-
ition, we can start by looking at lines that have the same color as their axes: These are the “stan-
dard” learning curve showing that each model’s validation loss in the same climate/geography 
monotonically decreases as the model is trained, confirming that we are not overfitting the train-
ing set.

We are now ready to zoom in on a key result of this manuscript: The learning curve of the 
“climate-invariant” NN trained in the cold aquaplanet but tested in the warm aquaplanet (starred 
blue line in the red box (a)). Impressively, this learning curve is mostly decreasing, confirming 
that “climate-invariant” NNs are able to continuously learn about subgrid thermodynamics in 
the warm aquaplanet as they are trained in the cold aquaplanet. In contrast, the “raw-data” NN 
trained in the cold aquaplanet but tested in the warm aquaplanet (circled blue line in the red box 
(a)) makes extremely large generalization errors, which worsen as the model is trained in the 
cold aquaplanet.

“Climate-invariant” NNs also facilitate learning across geographies, i.e., from the aqua-
planet to the Earth-like simulations (starred blue line in green box (b) is consistently below 
circled blue line) and vice-versa (starred green line in blue box (c) is consistently below circled 
green line). “Climate-invariant” transformations additionally improve the MLR baseline’s gen-
eralization ability (see right column, e.g., starred blue line in red box (a) and starred green line in



blue box (c)), albeit less dramatically. This smaller improvement in MLR’s generalization abili-
ties is linked to its relatively small number of free parameters, resulting in (1) “raw-data” MLRs 
generalizing better than “raw-data” NNs; and (2) MLRs having lower representation power and 
fitting their training sets less well, limiting the maximal accuracy of “climate-invariant” MLRs 
on the test set.

There are a few cases in which transforming inputs does not fully solve the generaliza-
tion problem, e.g., when trying to generalize from the aquaplanet to the Earth-like simulation 
(starred blue line in green box (b)). NNs with DP fit their training set less well (squared lines 
that have the same color as their boxes are above corresponding circled/starred lines). However, 
they improve generalization in difficult cases (e.g., squared blue line in green box (b)) and do 
not overly deteriorate generalization in cases where the input transformations work particularly 
well (e.g., squared green line in blue box (a)). This confirms that combining physics-guided 
generalization methods (e.g., physical transformation of the inputs/outputs) with standard ML 
generalization methods (e.g., DP) is advantageous.

D3. Geographic Skill
This section complements Sec 4.3 by presenting different cross-sections of NN skill after train-
ing. Our results confirm that while raw-data NN trained in the cold climate struggle to general-
ize to the warm climate’s Tropics, the climate-invariant mapping alleviates this limitation.

Fig S8a, which shows cross-section of the coefficient of determination R 2 (1 or yellow for 
perfect predictions, and -1 or blue for errors larger or equal to two standard deviations) exposes 
the raw-data NN’s poor generalization skill in the warm (+4K) Tropics. In contrast, Fig S8b 
underlines how climate-invariant NNs improve generalization throughout the atmosphere in 
the warm Tropics without deteriorating skill in the mid-latitudes and poles of the warm sim-
ulation. This consideration helped us choose our final input t ransformation, as the T̃ from NS 
temperature transformation significantly deteriorated generalization in the mid-latitudes, while 
the T̃buoyancy transformation helps generalization in the Tropics without overly compromising 
skills at other latitudes. There is a slight skill compromise at high latitudes, as can be seen by 
comparing the second rows of Fig S8a and Fig S8b, which is especially apparent in the SAM 
case and can be partially traced back to challenges in generalizing subgrid ice sedimentation 
(not shown here, see [54] for details).

To show that the improved generalization skill of climate-invariant NNs for subgrid heating 
is not unique to the mid-troposphere (see Fig 5), in Fig S9 we also show the generalization skill 
of climate-invariant NNs near the surface. Consistent with [52, 23], the highest skill for the 
training climate is over land for all NNs as most of the variability comes from the diurnal cycle, 
which is easy to predict for NNs. Similarly to Fig 5, the generalization error is apparent for the 
raw-data NN (a) and mostly solved by making the NN climate-invariant (b).



D4. Visualizing Climate-Invariant Mappings
Before using SHAP in Section 4.4 to visualize the difference between raw-data and climate-
invariant mappings, we test simple linear methods to analyze ML models. First, we directly plot
the weights A (see Eq 25) of our multi-linear regressions in Fig S10/S11. Second, we plot the
mean Jacobian of our NN calculated via automatic differentiation in Fig S12/S13. Unlike SHAP,
the MLR weights and the Jacobian matrices both suggest that the climate-invariant mapping is
non-local in the vertical. Fig S10/S11 is consistent with the climate-invariant MLR generalizing
only slightly better than the raw-data MLR (see top-right panel of Fig S7). Meanwhile, compar-
ing Fig S12/S13 to the full SHAP feature importance matrix (Fig S14/S15) suggests that while
the linear sensitivity of subgrid heating/moistening with respect to lower-tropospheric plume
buoyancy is high (top panels of Fig S12b), which is expected, subgrid heating/moistening can
be well-predicted using mostly local plume buoyancy information (top panels of Fig S14b).



Row Input SPCAM3 SPCESM2 SAM
1 q600hPa 20.3, 35.1 17.1, 29.5 22.1
2 qdeficit,600hPa 24.9, 36.5 18.1, 31.0 30.0
3 RH600hPa 3.6, 8.2 3.2, 5.3 4.3
4 T850hPa 53.2, 64.3 25.7, 37.3 51.9
5 Tfrom NS,850hPa 5.1, 6.2 3.3, 6.4 10.5
6 Bplume,850hPa 9.4, 14.7 3.6, 7.6 5.8
7 T150hPa 30.2, 33.5 31.6, 34.4 65.6
8 Tfrom NS,150hPa 38.0, 53.7 14.5, 28.7 51.0
9 Bplume,150hPa 35.1, 42.2 10.4, 20.9 21.1
10 LHF 8.6, 14.5 9.7, 12.5
11 LHFq 4.7, 9.5 10.0, 10.7
12 LHF∆q 6.3, 9.9 9.9, 14.0

Table S1: Hellinger distance (in %) away from the (-4K) simulation for the PDFs of key
inputs (q600hPa, T850hPa, T150hPa,LHF) and their transformations. (+0K) distance in gray and
(+4K) distance in red.

Model Spatiotemporal Resolution Training Set Validation Set Test Set
SPCAM3 (2.8°×2.8°)T42×30lev×30min Yr2, Mo1-4→47M Yr2, Mo5-8→48M Yr1, Mo6-9→48M
SPCESM2 2.5°×1.9°×30lev×15min Yr1, Day0-9/Mo→143M Yr2, Day0-9/Mo→143M Yr2, Day20-28/Mo →118M
SAM (-4K) 96km×96kmx48lev×180min day 225-545 → 13.8M day 545-562 → 0.7M day 562-587 → 2.6M

(+0K) 96kmx96km×48lev×180min - - day 380-405 → 2.6M

Table S2: Characteristics of the training/validation/test sets used in this manuscript. The 
spatiotemporal resolution uses the format longitude × latitude × vertical levels × time. For 
SPCAM3, which uses a T42 spectral truncation, we use months 1 to 4 of the second simulation 
year to build the training set, resulting in ≈ 47M samples. For SPCESM2, we use the first 9 
days of every month of the first simulation year to build the training set, resulting in ≈  143M 
samples.



Row Input SPCAM3 SPCESM2 SAM
1 q600hPa 0.5, 0.8 0.4, 0.7 0.5
2 qdeficit,600hPa 0.7, 1.0 0.4, 0.8 0.8
3 RH600hPa 0.1, 0.2 0.1, 0.1 0.1
4 T850hPa 1.4, 1.9 0.5, 0.8 1.3
5 Tfrom NS,850hPa 0.1, 0.1 0.1, 0.1 0.2
6 Bplume,850hPa 0.2, 0.3 0.1, 0.2 0.1
7 T150hPa 0.6, 0.7 0.7, 0.7 1.5
8 Tfrom NS,150hPa 0.9, 1.4 0.3, 0.6 1.4
9 Bplume,150hPa 1.0, 1.2 0.2, 0.4 0.5

10 LHF 0.2, 0.3 0.2, 0.3
11 LHFq 0.1, 0.2 0.2, 0.2
12 LHF∆q 0.1, 0.2 0.2, 0.3

Table S3: Jensen-Shannon distance away from the (-4K) simulation for the PDFs of key
inputs (q600hPa, T850hPa, T150hPa,LHF) and their transformations. (+0K) distance in gray and
(+4K) distance in red.
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Figure S1: Surface temperatures and subgrid heating rate in the three utilized atmospheric 
models. (a) Prescribed surface temperature (in K) for (left) the aquaplanet SPCAM3 model and 
(right) the hypohydrostatic SAM model. (center) Annual-mean, near-surface air temperatures in 
the Earth-like SPCESM2 model. (b) Snapshots of near-surface subgrid heating rate (in K/day). 
For each model, we show the cold (-4K), reference (+0K), and warm (+4K) simulations.
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Figure S2: Univariate PDFs of the (a) 600hPa specific humidity, (b) 850hPa temperature, 
and (c) latent heat flux in the cold ( blue), reference ( gray), and warm (red) simulations 
of each model (SPCAM3, SPCESM2, and SAM). For each variable, we also show the PDFs 
of the two transformations discussed in SM SB.2. From top to bottom, the variables are q 
(g/kg), qdeficit (g/kg), RH, T (K), T from NS (K), B plume (m/s2), LHF (W/m2), LHFq (kg m−2s−1), 
and LHF∆q (kg m−2s−1). For a given variable and transformation, we use the same vertical 
logarithmic scale across models. Note that unlike for q, the best options for T and LHF do not 
decrease distribution distance more than the second best options, which is discussed in text.
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Figure S5: Transforming outputs via quantile mapping after training slightly improves the 
climate invariant model’s ability to generalize from a cold to a warm climate. Coefficient 
of determination R2 for 500-hPa subgrid heating of raw-data (a), climate-invariant (b), climate-
invariant with outputs transformed after training (c), climate-invariant with outputs transformed 
before training (d) NNs trained using the cold (-4K) training set of SPCAM3 and calculated over 
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Figure S7: Unlike raw-data models, climate-invariant models continuously learn about 
subgrid thermodynamics in the warm aquaplanet as they are trained in the cold aqua-
planet. More generally, they can learn information about configurations that differ from the one 
they were trained in. Learning curves of neural nets (left) and multiple linear regressions (right) 
tested in the (-4K) cold aquaplanet simulation (a, top row), the (+4K) warm aquaplanet simula-
tion (b, middle row), and the (-4K) cold Earth-like simulation (c, bottom row). The lines’ colors 
indicate the training dataset, while their symbols refer to whether the ML model is raw-data 
(circle), climate-invariant (star), or climate-invariant with dropout layers before each activation 
function and batch normalization (square). (b) We additionally zoom in on the climate-invariant 
neural network’s learning curve in the (+4K) simulation.
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Figure S8: Latitude-Pressure cross-section of subgrid heating’s coefficient of determina-
tion R2. We train (a) raw-data and (b) climate-invariant NNs using the cold (-4K) training set of
each model (SPCAM3, SPCESM2, and SAM) and test them in the cold (-4K) and warm (+4K)
climates. See Fig 5 or Fig S9 for the colorbar.
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Figure S9: Climate-invariant NNs mitigate generalization issues in the “Warm Tropics”
for near-surface subgrid heating. Same as Fig 6 for near-surface subgrid heating.



q

T

lw

sw

0hPa

200hPa

103hPa

qT

Trained Cold Aqua.

qT

Trained Warm Aqua.

qT

DifferenceCold -Warm

q

T

lw

sw

0hPa

200hPa

103hPa

RHBplume RHBplume RHBplume

60

40

20

0

20

40

60

M
ul

tip
le

 L
in

ea
r 

R
eg

re
ss

io
n 

W
ei

gh
ts

 (U
ni

tle
ss

)(a
)R

aw
 D

at
a

(b
)C

lim
at

e-
In

va
ri

an
t

Figure S10: Weights of the (a) raw-data and (b) climate-invariant multi-linear regressions 
trained in the cold (-4K) aquaplanet simulation (left), the warm (+4) warm aquaplanet 
simulation (middle), and their difference (right). The x-axes indicate the vertical levels of 
the inputs, from the surface (left, 103hPa) to the top of the atmosphere (right, 0hPa), while the 
y-axes indicate the vertical levels of the outputs, from the surface (bottom, 103hPa) to the top 
of the atmosphere (top, 0hPa). We additionally indicate the 200hPa vertical level with dotted 
black lines.
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Figure S11: Same as Fig S10, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line), 
solar insolation (S0, yellow line), surface sensible heat flux (SHF, green line), and surface latent 
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHF∆q 
as described in Sec 3, which in conjunction with the temperature and humidity transformations, 
changes the multi-linear regression weights for all input variables.
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Figure S12: Jacobian matrices of the (a) raw-data and (b) climate-invariant neural net-
works trained in the cold (-4K) aquaplanet simulation (left), the warm (+4) warm aqua-
planet simulation (middle), and their difference (right). The x-axes indicate the vertical 
levels of the inputs, from the surface (left, 103hPa) to the top of the atmosphere (right, 0hPa), 
while the y-axes indicate the vertical levels of the outputs, from the surface (bottom, 103hPa) to 
the top of the atmosphere (top, 0hPa). We additionally indicate the 200hPa vertical level with 
dotted black lines.
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Figure S13: Same as Fig S12, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line), 
solar insolation (S0, yellow line), surface sensible heat flux (SHF, green line), and surface latent 
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHF∆q 
as described in Sec 3, which in conjunction with the temperature and humidity transformations, 
changes the Jacobian matrices for all input variables.



q

T

lw

sw

0hPa

200hPa

103hPa

qT

Trained Cold Aqua.

qT

Trained Warm Aqua.

qT

DifferenceCold -Warm

q

T

lw

sw

0hPa

200hPa

103hPa

RHBplume RHBplume RHBplume

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

SH
AP

 F
ea

tu
re

 Im
po

rt
an

ce
 M

at
ri

x 
[W

 m
2 ]

(a
)R

aw
 D

at
a

(b
)C

lim
at

e-
In

va
ri

an
t

Figure S14: SHAP feature importance matrix for the (a) raw-data and (b) climate-
invariant neural nets trained in the cold (-4K) aquaplanet simulation (left), the warm 
(+4) warm aquaplanet simulation (middle), and their difference (right). To calculate these 
matrices, we sample inputs from the (+4K) warm aquaplanet simulation for all ML models to 
facilitate inter-model comparison. The x-axes indicate the vertical levels of the inputs, from the 
surface (left, 103hPa) to the top of the atmosphere (right, 0hPa), while the y-axes indicate the 
vertical levels of the outputs, from the surface (bottom, 103hPa) to the top of the atmosphere 
(top, 0hPa). We additionally indicate the 200hPa vertical level with dotted black lines.
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Figure S15: Same as Fig S14, but for the four scalar inputs used in addition to the temper-
ature and specific humidity i nputs. The scalar inputs are surface pressure (ps, purple line), 
solar insolation (S0, yellow line), surface sensible heat flux (SHF, green line), and surface latent 
heat flux (LHF, blue line). For the climate-invariant mapping (b), LHF is transformed to LHF∆q 
as described in the “Theory” section, which in conjunction with the temperature and humidity 
transformations, changes the SHAP feature importance matrix for all input variables.
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