
12.810 Dynamics of the Atmosphere 

Internal gravity waves in the atmosphere 



(ERA40 reanalysis data 1980-2001)
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Trapped lee waves downwind from Hawaiian Islands



  Internal gravity waves 

• Basic theory of internal gravity waves will first be 
introduced (see handout)

• Then discuss:

- mountain waves

- compressible gravity waves and vertical propagation 

- interaction of gravity waves with mean flow



  Internal gravity waves: Introductory material 

α=1: full equations
α=0: hydrostatic

Rewrite for
convenience

Governing equtions for non-
rotating, inviscid, adiabatic flow in 
Boussinesq approximation

Internal gravity waves1

In most places, and at most times, the atmosphere is stably stratified to unsatu-

rated displacements. Here we consider what happens when a stably stratified fluid is

perturbed. These introductory notes cover the simplest case of a Boussinesq fluid.

2.1 Boussinesq fluid

We begin with the Boussinesq equations:
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where u = (u, v, w) is the velocity, b is the buoyancy, � is the perturbation pressure

divided by the reference density, and the Lagrangian derivative isD/Dt = @/@t+u·r.

Note that the third of (1) becomes the equation of hydrostatic balance when dw/dt
is negligible. We will replace this equation by

↵
dw

dt
= �@�

@z
+ b .

The constant ↵ is a trick: ↵ = 1, of course, but we shall carry it through the analysis

so that we can, after the fact, look at the hydrostatic case by setting ↵ = 0.

2.1.1 Waves on a motionless basic state

Assume a motionless, stratified, basic state, with u = v = w = 0, b0 = N2z +

constant, �0 =
R
b0 dz . N2 > 0, so this state is stably stratified. Then small-

amplitude perturbations approximately satisfy the linearized equations resulting from

1These notes are slightly adapted from notes courtesy of Alan Plumb
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Waves on a basic state

• Basic state is an exact solution on which waves propagate

• Choose a basic state that is at rest and stably stratified: 

• N is the buoyancy frequency (the angular frequency at which 
a parcel moving vertically would oscillate)

• Full solution is basic state plus a perturbation that is the wave. 
For example, for buoyancy:
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Assume small amplitude perturbations and linearize the 
equations (drop terms that are squared in wave amplitude)

the neglect of nonlinear terms in (1)
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! = ±N

r
k2 + l2

k2 + l2 +m2
(2)

2



Look for wavelike solutions

the neglect of nonlinear terms in (1)
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where k=(k,l,m) is the wavenumber vector and ω is the angular frequency



Dispersion relation for non-hydrostatic (α=1) waves

the neglect of nonlinear terms in (1)
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Note that this can be written

! = ±N sin � ,

where � is the angle the wavenumber vector k = (k, l,m) makes with the vertical. So

|!|  N .

The phase speed in the direction of k is given by

c =
!

|k|

and the group velocity is
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Note:

1. cg · k = 0 : group propagation is along the phase lines

2. From the continuity eq., k · u0
= 0 — the fluid motions are along the phase

lines. (Note that this implies no advection of wave properties; e.g., since b0

does not vary along lines of constant phase, u0 ·rb0 = 0. Hence the nonlinear

advection terms we neglected on the grounds of small amplitude are in fact zero

— a monochromatic plane internal gravity wave in a uniform medium is in fact

a nonlinear solution to the problem!)

3. Note that point (2) implies that fluid motions are normal to k. So as � ! ⇡/2,
the motions are vertical and ! ! N , the buoyancy frequency; as � ! 0, the

motions are horizontal (against which the stratification o↵ers no resistance) and

! ! 0.

4. Note that if all components of k are real, !  N : disturbances with ! > N
cannot propagate.

5. (cg)x = m2k2cx/ [(k2
+ l2 +m2

) (k2
+ l2)], so the x components of phase and

group velocities are in the same direction. Similarly, the y component. But

(cg)z = �m2cz/ (k2
+ l2 +m2

) — the vertical components of group and phase

velocities have opposite signs.

So an upward (and rightward) propagating wave looks as shown in the following

figure:

3
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Which implies that

(no propagation otherwise!)



Propagation: Phase and group velocities
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A wave with group velocity upwards and to the right

From a localized source oscillating with a single frequency !, the waves form rays

(the “St Andrews’ cross”) at angles � = sin
�1

(!/N) to the horizontal, with the

phase propagation across the rays:

Hydrostatic case (↵ = 0) When ↵ = 0, the dispersion relation becomes

! = ±N

m

p
k2 + l2 = ±N tan �

There is no longer any restriction !  N , so the hydrostatic approximation is not

valid for high frequency waves for which this approximation predicts ! & N , but it

should be good for � ⌧ 1 (! ⌧ N). Equivalently, it requires k2
+ l2 ⌧ m2

, i.e.,
vertical scales much less than horizontal scales.

4

Wavy lines are isolines of b=b’+b0(z)
Black arrows show velocity



cg⋅k = 0:  Group propagation is along phase lines!

From a localized source oscillating with a single frequency !, the waves form rays

(the “St Andrews’ cross”) at angles � = sin
�1

(!/N) to the horizontal, with the

phase propagation across the rays:

Hydrostatic case (↵ = 0) When ↵ = 0, the dispersion relation becomes

! = ±N

m

p
k2 + l2 = ±N tan �

There is no longer any restriction !  N , so the hydrostatic approximation is not

valid for high frequency waves for which this approximation predicts ! & N , but it

should be good for � ⌧ 1 (! ⌧ N). Equivalently, it requires k2
+ l2 ⌧ m2

, i.e.,
vertical scales much less than horizontal scales.

4



Group velocity is upwards if phase propagation downwards! 
(but both phase and group propagate to the right)

From a localized source oscillating with a single frequency !, the waves form rays

(the “St Andrews’ cross”) at angles � = sin
�1

(!/N) to the horizontal, with the

phase propagation across the rays:

Hydrostatic case (↵ = 0) When ↵ = 0, the dispersion relation becomes

! = ±N

m

p
k2 + l2 = ±N tan �

There is no longer any restriction !  N , so the hydrostatic approximation is not

valid for high frequency waves for which this approximation predicts ! & N , but it

should be good for � ⌧ 1 (! ⌧ N). Equivalently, it requires k2
+ l2 ⌧ m2

, i.e.,
vertical scales much less than horizontal scales.

4

z direction is special because of gravity



k⋅u = 0:  Fluid motions are along phase lines

From a localized source oscillating with a single frequency !, the waves form rays

(the “St Andrews’ cross”) at angles � = sin
�1

(!/N) to the horizontal, with the

phase propagation across the rays:

Hydrostatic case (↵ = 0) When ↵ = 0, the dispersion relation becomes

! = ±N

m

p
k2 + l2 = ±N tan �

There is no longer any restriction !  N , so the hydrostatic approximation is not

valid for high frequency waves for which this approximation predicts ! & N , but it

should be good for � ⌧ 1 (! ⌧ N). Equivalently, it requires k2
+ l2 ⌧ m2

, i.e.,
vertical scales much less than horizontal scales.

4

Implies that no advection of wave properties such as b: 
plane gravity wave is a nonlinear solution!
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k=(k,m)=(2,2);  cg=(0.18,-0.18)

Animation courtesy
 Glenn Flierl
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Note that this can be written
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Note:
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2. From the continuity eq., k · u0
= 0 — the fluid motions are along the phase

lines. (Note that this implies no advection of wave properties; e.g., since b0

does not vary along lines of constant phase, u0 ·rb0 = 0. Hence the nonlinear

advection terms we neglected on the grounds of small amplitude are in fact zero

— a monochromatic plane internal gravity wave in a uniform medium is in fact

a nonlinear solution to the problem!)

3. Note that point (2) implies that fluid motions are normal to k. So as � ! ⇡/2,
the motions are vertical and ! ! N , the buoyancy frequency; as � ! 0, the

motions are horizontal (against which the stratification o↵ers no resistance) and

! ! 0.

4. Note that if all components of k are real, !  N : disturbances with ! > N
cannot propagate.

5. (cg)x = m2k2cx/ [(k2
+ l2 +m2

) (k2
+ l2)], so the x components of phase and

group velocities are in the same direction. Similarly, the y component. But

(cg)z = �m2cz/ (k2
+ l2 +m2

) — the vertical components of group and phase

velocities have opposite signs.

So an upward (and rightward) propagating wave looks as shown in the following
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Hydrostatic case (set α=0)

From a localized source oscillating with a single frequency !, the waves form rays

(the “St Andrews’ cross”) at angles � = sin
�1

(!/N) to the horizontal, with the

phase propagation across the rays:

Hydrostatic case (↵ = 0) When ↵ = 0, the dispersion relation becomes

! = ±N

m

p
k2 + l2 = ±N tan �

There is no longer any restriction !  N , so the hydrostatic approximation is not

valid for high frequency waves for which this approximation predicts ! & N , but it

should be good for � ⌧ 1 (! ⌧ N). Equivalently, it requires k2
+ l2 ⌧ m2

, i.e.,
vertical scales much less than horizontal scales.

4

Only a good approximation to 

when      is small i.e. 

This is true when vertical length scales are small 
compared to horizontal length scales 

Note that this can be written

! = ±N sin � ,

where � is the angle the wavenumber vector k = (k, l,m) makes with the vertical. So

|!|  N .

The phase speed in the direction of k is given by

c =
!

|k|

and the group velocity is

cg =

✓
@!

@k
,
@!

@l
,
@!

@m

◆
=

!m

(k2 + l2 +m2)


km

k2 + l2
,

lm

k2 + l2
,�1

�
.

Note:

1. cg · k = 0 : group propagation is along the phase lines

2. From the continuity eq., k · u0
= 0 — the fluid motions are along the phase

lines. (Note that this implies no advection of wave properties; e.g., since b0

does not vary along lines of constant phase, u0 ·rb0 = 0. Hence the nonlinear

advection terms we neglected on the grounds of small amplitude are in fact zero
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Fig 3  Durran, AMS, 1990 Waves over a broad isolated ridge
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Introduction to pressure coordinates

• If make the hydrostatic approximation, then often useful to change 
from z to p as the vertical coordinate

• Advantages:

- No time derivative in mass continuity equation

- No 1/density in horizontal pressure force term 

• Disadvantages:

- Lower boundary pressure is not fixed in time

- Static stability parameter not roughly constant in the vertical

• Note that:

- Unit vector in vertical remains in the same direction

- Derivatives in x and y change because now holding p rather than z 
constant



Introduction to pressure coordinates (handout)

Introduction to using pressure as a vertical coordinate

When the hydrostatic approximation is used, it often makes sense to change vertical
coordinate from height (z) to pressure (p). The principal advantages of the pressure
coordinate are that the mass continuity equation does not contain a time deriva-
tive, and the pressure force term in the equation for the horizontal velocity does not
involve the density. The principal disadvantages are that the value of the vertical
coordinate at the lower boundary is no longer fixed in time1, and that the static
stability parameter is strongly varying in the vertical.

Note that the unit vector in the vertical remains in the same direction when we change
vertical coordinate from z to p. However, partial derivatives in the horizontal such
as @T/@x change because we are holding p rather than z constant and surfaces of
constant p are generally tilted with respect to surfaces of constant z.

These notes broadly follow section 2.6.2 of the Vallis textbook (2nd edition). See also
sections 1.4.2 and 3.1 of Holton and Hakim.

Vertical velocity

The vertical velocity in pressure coordinates is given by ! = Dp/Dt. This is analogous
to how we define the horizontal velocities (u = Dx/Dt and v = Dy/Dt) or the vertical
velocity in height coordinates (w = Dz/Dt).

Lagrangian derivative

The Lagrangian derivative is expressed in pressure coordinates as

D

Dt
=

@

@t
+ u ·r+ !

@

@p
, (1)

where u = (u, v). Both the horizontal gradient r and the time derivative (@/@t) are
taken at constant p rather than z.

Mass continuity equation

Mass conservation for a material element of air may be written as

D⇢�V

Dt
= 0, (2)

1A common compromise in numerical modeling is to use a terrain following coordinate such as
� = p/ps where ps is surface pressure.

1
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where �V = �x�y�z is the volume of the material element. Hydrostatic balance gives
us that ⇢�z = ��p/g, such that

D�x�y�p

Dt
= 0. (3)

We then use that D�x/Dt = �u where �u is the change in u across the material
element in the x direction. Similarly D�y/Dt = �v and D�p/Dt = �!. Substituting
into equation 3 gives that

�u

�x
+

�v

�y
+

�!

�p
= 0. (4)

In the limit of an infinitesimal parcel of air, this then gives the mass continuity
equation in pressure coordinates:

@u

@x
+

@v

@y
+

@!

@p
= 0. (5)

Pressure force in the horizontal

The pressure force term in the horizontal momentum equation in z coordinates may
be written as

�1

⇢
(rp)z , (6)

where the subscript z make explicit that horizontal derivatives are taken at constant z.
To convert this to pressure coordinates, we first write the general rule for converting a
derivative with respect to x from the z vertical coordinate to the p vertical coordinate:

✓
@

@x

◆

p

=

✓
@

@x

◆

z

+

✓
@z

@x

◆

p

@

@z
. (7)

Applying this rule to the derivative of p gives that

0 =

✓
@p

@x

◆

z

+

✓
@z

@x

◆

p

@p

@z
. (8)

Using hydrostatic balance then gives that

�1

⇢

✓
@p

@x

◆

z

= �
✓
@�

@x

◆

p

, (9)

where � = gz is the geopotential. Finally, considering derivatives with respect to
both x and y gives that

�1

⇢
(rp)z = � (r�)p . (10)
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Hydrostatic balance (vertical momentum equation)

Hydrostatic balance in z coordinates (@p/@z = �⇢g) is more conveniently written
using the ideal gas law as

@�

@p
= �RT

p
. (11)
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Introduction to pressure coordinates (handout)

Hydrostatic balance (vertical momentum equation)

Hydrostatic balance in z coordinates (@p/@z = �⇢g) is more conveniently written
using the ideal gas law as

@�

@p
= �RT

p
. (11)

Thermodynamic equation and static stability parameter

The thermodynamic equation in the absence of diabatic heating and written in terms
of potential temperature (✓) remains:

D✓

Dt
= 0. (12)

Alternatively it can be written in terms of temperature T as

@T

@t
+ u ·rT � !Sp = 0, (13)

where the static stability parameter is

Sp = �T

✓

@✓

@p
. (14)

One disadvantage of pressure coordinates is that Sp increases with height, whereas
static stability in z coordinates is usually expressed as N2 = g(@✓/@z)/✓ which is
relatively constant over the troposphere.

Summary

The equations for horizontal velocity, hydrostatic balance, mass continuity and poten-
tial temperature in pressure coordinates in the absence of friction, diabatic heating,
and planetary rotation are:

Du

Dt
= �r�, (15)

@�

@p
= �RT

p
, (16)

r · u+
@!

@p
= 0, (17)

D✓

Dt
= 0. (18)
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Fig 4a  Contours of potential temperature in a breaking 
gravity wave 

the áux has to be felt somewhere. One common way for this to happen is

the the waves break by convective instability. Consider Fig. 4. An upward

Figure 4: Schematic of isentropes in a breaking gravity wave.

propagating wave is increasing in amplitude with height. In reality, such an

increase (as expressed by j@@0=@zj = (@@0=@z), which in fact is what matters)
can occur because of decreasing A (in the mesosphere, generally), or also
because of decreasing u0 ! c (such as near the tropopause, above the main
jet). The isentropes (@ = @0(z) + @

0(x; z; t)) are perturbed by the wave; at
small wave amplitude, the isentropes are just wavy but when the amplitude

gets very large, the distortion of the isentropes is such that they may over-

turn (@@=@z < 0), at which point convective instability sets in and rapidly
mixes @, thereby dissipating the wave and, amongst other things, reducing
its momentum áux. Thus, there is a convergence of the waveís momentum

áux where breaking occurs, and the mean áow is a§ected, as illustrated in

Fig. 5. In the case shown, the wave has c > u0, so by (34), its upward
momentum áux is positive below the breaking region. Above the breaking

region, the áux is assumed to vanish (i.e. the wave is completely dissipated

in the breaking region). Hence, integrated over the breaking region,

Z above

below

A
@?u

@t
dz = !

Z above

below

@

@z

/
Au0w0

0
dz = Au0w0

99
below

> 0 ;

23
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Non-acceleration theorem for stationary gravity waves 
(handout)

Non-acceleration result for stationary internal gravity waves

We have seen that for a 2-D flow (in x and z) the mean state is a↵ected by waves

through convergence of vertical fluxes of temperature (⇢w0✓0) and momentum (⇢w0u0)

by the waves. The overline denotes a zonal mean and the primes denote wave quan-

tities. In this handout, we will derive expressions for how these fluxes vary in the

vertical following Eliassen and Palm 1961.

We assume that the waves are stationary, inviscid, adiabatic and small amplitude.

The assumption of small-amplitude waves allows us to use the linearized equations

of motion to calculate the wave fluxes. The wave fluxes will change the mean state,

but the changes in mean state are considered as a higher-order correction in our

calculation of the fluxes.

Consider a basic state defined by zonal wind U0(z) and potential temperature ✓0(z).

We assume the basic state is statically stable such that
@✓0
@z > 0. Given the assumption

of stationary waves (@/@t = 0), the linearized equations in log-pressure coordinates

are:

U0
@u

0

@x
+ w

0@U0

@z
+

@�
0

@x
= 0, (5)

@u
0

@x
+

1

⇢

@⇢w
0

@z
= 0, (6)

U0
@✓

0

@x
+ w

0@✓0

@z
= 0, (7)

@�
0

@z
� R⇧✓

0

H
= 0. (8)

Note that our equation numbering does not start from 1 to be consistent with the

numbering used in class.

First consider the vertical wave flux of temperature (⇢w0✓0). Multiple Eq. 7 by ✓
0
and

take the zonal average (i.e., average in x):

U0 ✓
0@✓

0

@x
+ w0✓0

@✓0

@z
= 0,

) U0
1

2

@✓02

@x
+ w0✓0

@✓0

@z
= 0,

) w0✓0
@✓0

@z
= 0,

where the last step follows because we assume the waves are periodic in x. Thus,

we have zero vertical temperature flux (⇢w0✓0 = 0) by our stationary and adiabatic

waves.

Next we consider the vertical momentum flux (⇢w0u0). This flux is generally not zero,

but how does it vary in the vertical?

1
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we have zero vertical temperature flux (⇢w0✓0 = 0) by our stationary and adiabatic

waves.

Next we consider the vertical momentum flux (⇢w0u0). This flux is generally not zero,

but how does it vary in the vertical?
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Non-acceleration result for stationary internal gravity waves

We have seen that for a 2-D flow (in x and z) the mean state is a↵ected by waves

through convergence of vertical fluxes of temperature (⇢w0✓0) and momentum (⇢w0u0)

by the waves. The overline denotes a zonal mean and the primes denote wave quan-

tities. In this handout, we will derive expressions for how these fluxes vary in the

vertical following Eliassen and Palm 1961.

We assume that the waves are stationary, inviscid, adiabatic and small amplitude.

The assumption of small-amplitude waves allows us to use the linearized equations

of motion to calculate the wave fluxes. The wave fluxes will change the mean state,

but the changes in mean state are considered as a higher-order correction in our

calculation of the fluxes.

Consider a basic state defined by zonal wind U0(z) and potential temperature ✓0(z).

We assume the basic state is statically stable such that
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@z > 0. Given the assumption
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where the last step follows because we assume the waves are periodic in x. Thus,

we have zero vertical temperature flux (⇢w0✓0 = 0) by our stationary and adiabatic

waves.

Next we consider the vertical momentum flux (⇢w0u0). This flux is generally not zero,

but how does it vary in the vertical?
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Multiply Eq. 5 by u
0
and average in x to give an equation that is the budget of kinetic

energy of the waves (if we had not assumed stationary waves there would be a term

@(u
02
/2)/@t):
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Thus, the pressure force term (in the form of
@�0

@x ) in the zonal momentum equation

causes w0u0 6= 0 unlike for w0✓0. We next rewrite u0 @�0

@x in terms of ⇢w0�0. Using

property (iii) of zonal averages from class, we write that
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The final form of our energy equation is
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= 0, (9)

where the first term represents conversion between wave and mean energy, and the

second term is the divergence of the vertical wave energy flux. We have found a

relation between the vertical momentum flux ⇢w0u0 and the vertical wave energy flux

⇢w0�0, but we will need another constraint to find either flux individually.

We go back to the wave zonal momentum equation (Eq. 5) and group the x-derivatives

together:
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Taking a zonal average then gives that

@U0

@z

�
U0u

0w0 + w0�0
�
= 0.

In the case that
@U0
@z 6= 0, we multiple by ⇢ to give a second relation between the

vertical wave momentum and energy fluxes:
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@z = 0, we still get the same result as follows: Eq. 5 implies that
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where the second equality follows because the waves have zero mean. Multiplying by
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and taking a zonal average gives Eq. 10 as required.

Substituting for ⇢w0�0 from Eq. 10 into Eq. 9 gives that:
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Our final and simple result is that
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(⇢u0w0) = 0. (11)

The vertical wave momentum flux ⇢u0w0 is constant in the vertical (@⇢u0w0/@z = 0)

except where U0 = 0. Since we have previously shown that

@u

@t
= �1

⇢

@

@z
(⇢w0u0),

we conclude that small-amplitude, adiabatic, inviscid, and stationary waves do not

a↵ect the mean flow except where U0 = 0. We are considering stationary waves

(phase speed zero), and thus levels with U0 = 0 are “critical levels” defined by the

phase speed being equal to U0.

We will consider the implications of this remarkable non-acceleration result in our

next class.

3

We next multiply by U0u
0
+ �

0
(last time we multiplied by u

0
) to give

@

@x


1

2
(U0u

0
+ �

0
)
2

�
+ U0u

0
w

0@U0

@z
+ w

0
�
0@U0

@z
= 0.

Taking a zonal average then gives that

@U0

@z

�
U0u

0w0 + w0�0
�
= 0.

In the case that
@U0
@z 6= 0, we multiple by ⇢ to give a second relation between the

vertical wave momentum and energy fluxes:

U0⇢u
0w0 + ⇢w0�0 = 0. (10)

If
@U0
@z = 0, we still get the same result as follows: Eq. 5 implies that

U0
@u

0

@x
+

@�
0

@x
= 0

) U0u
0
+ �

0
= 0,

where the second equality follows because the waves have zero mean. Multiplying by

⇢w
0
and taking a zonal average gives Eq. 10 as required.

Substituting for ⇢w0�0 from Eq. 10 into Eq. 9 gives that:

⇢w0u0 @U0

@z
� @

@z
(U0⇢u

0w0) = 0

) ⇢w0u0 @U0

@z
� @U0

@z
⇢w0u0 � U0

@

@z
(⇢u0w0) = 0.

Our final and simple result is that

U0
@

@z
(⇢u0w0) = 0. (11)

The vertical wave momentum flux ⇢u0w0 is constant in the vertical (@⇢u0w0/@z = 0)

except where U0 = 0. Since we have previously shown that

@u

@t
= �1

⇢

@

@z
(⇢w0u0),

we conclude that small-amplitude, adiabatic, inviscid, and stationary waves do not

a↵ect the mean flow except where U0 = 0. We are considering stationary waves

(phase speed zero), and thus levels with U0 = 0 are “critical levels” defined by the

phase speed being equal to U0.

We will consider the implications of this remarkable non-acceleration result in our

next class.

3

Several steps later…



Non-acceleration theorem for stationary gravity waves 
(handout)

We next multiply by U0u
0
+ �

0
(last time we multiplied by u

0
) to give

@

@x


1

2
(U0u

0
+ �

0
)
2

�
+ U0u

0
w

0@U0

@z
+ w

0
�
0@U0

@z
= 0.

Taking a zonal average then gives that

@U0

@z

�
U0u

0w0 + w0�0
�
= 0.

In the case that
@U0
@z 6= 0, we multiple by ⇢ to give a second relation between the

vertical wave momentum and energy fluxes:

U0⇢u
0w0 + ⇢w0�0 = 0. (10)

If
@U0
@z = 0, we still get the same result as follows: Eq. 5 implies that

U0
@u

0

@x
+

@�
0

@x
= 0

) U0u
0
+ �

0
= 0,

where the second equality follows because the waves have zero mean. Multiplying by

⇢w
0
and taking a zonal average gives Eq. 10 as required.

Substituting for ⇢w0�0 from Eq. 10 into Eq. 9 gives that:

⇢w0u0 @U0

@z
� @

@z
(U0⇢u

0w0) = 0

) ⇢w0u0 @U0

@z
� @U0

@z
⇢w0u0 � U0

@

@z
(⇢u0w0) = 0.

Our final and simple result is that

U0
@

@z
(⇢u0w0) = 0. (11)

The vertical wave momentum flux ⇢u0w0 is constant in the vertical (@⇢u0w0/@z = 0)

except where U0 = 0. Since we have previously shown that

@u

@t
= �1

⇢

@

@z
(⇢w0u0),

we conclude that small-amplitude, adiabatic, inviscid, and stationary waves do not

a↵ect the mean flow except where U0 = 0. We are considering stationary waves

(phase speed zero), and thus levels with U0 = 0 are “critical levels” defined by the

phase speed being equal to U0.

We will consider the implications of this remarkable non-acceleration result in our

next class.

3

We next multiply by U0u
0
+ �

0
(last time we multiplied by u

0
) to give

@

@x


1

2
(U0u

0
+ �

0
)
2

�
+ U0u

0
w

0@U0

@z
+ w

0
�
0@U0

@z
= 0.

Taking a zonal average then gives that

@U0

@z

�
U0u

0w0 + w0�0
�
= 0.

In the case that
@U0
@z 6= 0, we multiple by ⇢ to give a second relation between the

vertical wave momentum and energy fluxes:

U0⇢u
0w0 + ⇢w0�0 = 0. (10)

If
@U0
@z = 0, we still get the same result as follows: Eq. 5 implies that

U0
@u

0

@x
+

@�
0

@x
= 0

) U0u
0
+ �

0
= 0,

where the second equality follows because the waves have zero mean. Multiplying by

⇢w
0
and taking a zonal average gives Eq. 10 as required.

Substituting for ⇢w0�0 from Eq. 10 into Eq. 9 gives that:

⇢w0u0 @U0

@z
� @

@z
(U0⇢u

0w0) = 0

) ⇢w0u0 @U0

@z
� @U0

@z
⇢w0u0 � U0

@

@z
(⇢u0w0) = 0.

Our final and simple result is that

U0
@

@z
(⇢u0w0) = 0. (11)

The vertical wave momentum flux ⇢u0w0 is constant in the vertical (@⇢u0w0/@z = 0)

except where U0 = 0. Since we have previously shown that

@u

@t
= �1

⇢

@

@z
(⇢w0u0),

we conclude that small-amplitude, adiabatic, inviscid, and stationary waves do not

a↵ect the mean flow except where U0 = 0. We are considering stationary waves

(phase speed zero), and thus levels with U0 = 0 are “critical levels” defined by the

phase speed being equal to U0.

We will consider the implications of this remarkable non-acceleration result in our

next class.

3

                                               



Fig 4b  “Cat’s eye” flow at a critical level
Contours are the streamfunction in a frame with c=0

u0>0

u0=0

u0<0

the áux has to be felt somewhere. One common way for this to happen is

the the waves break by convective instability. Consider Fig. 4. An upward

Figure 4: Schematic of isentropes in a breaking gravity wave.

propagating wave is increasing in amplitude with height. In reality, such an

increase (as expressed by j@@0=@zj = (@@0=@z), which in fact is what matters)
can occur because of decreasing A (in the mesosphere, generally), or also
because of decreasing u0 ! c (such as near the tropopause, above the main
jet). The isentropes (@ = @0(z) + @

0(x; z; t)) are perturbed by the wave; at
small wave amplitude, the isentropes are just wavy but when the amplitude

gets very large, the distortion of the isentropes is such that they may over-

turn (@@=@z < 0), at which point convective instability sets in and rapidly
mixes @, thereby dissipating the wave and, amongst other things, reducing
its momentum áux. Thus, there is a convergence of the waveís momentum

áux where breaking occurs, and the mean áow is a§ected, as illustrated in

Fig. 5. In the case shown, the wave has c > u0, so by (34), its upward
momentum áux is positive below the breaking region. Above the breaking

region, the áux is assumed to vanish (i.e. the wave is completely dissipated

in the breaking region). Hence, integrated over the breaking region,

Z above

below

A
@?u

@t
dz = !

Z above

below

@

@z

/
Au0w0

0
dz = Au0w0

99
below

> 0 ;

23

the áux has to be felt somewhere. One common way for this to happen is

the the waves break by convective instability. Consider Fig. 4. An upward

Figure 4: Schematic of isentropes in a breaking gravity wave.

propagating wave is increasing in amplitude with height. In reality, such an

increase (as expressed by j@@0=@zj = (@@0=@z), which in fact is what matters)
can occur because of decreasing A (in the mesosphere, generally), or also
because of decreasing u0 ! c (such as near the tropopause, above the main
jet). The isentropes (@ = @0(z) + @

0(x; z; t)) are perturbed by the wave; at
small wave amplitude, the isentropes are just wavy but when the amplitude

gets very large, the distortion of the isentropes is such that they may over-

turn (@@=@z < 0), at which point convective instability sets in and rapidly
mixes @, thereby dissipating the wave and, amongst other things, reducing
its momentum áux. Thus, there is a convergence of the waveís momentum

áux where breaking occurs, and the mean áow is a§ected, as illustrated in

Fig. 5. In the case shown, the wave has c > u0, so by (34), its upward
momentum áux is positive below the breaking region. Above the breaking

region, the áux is assumed to vanish (i.e. the wave is completely dissipated

in the breaking region). Hence, integrated over the breaking region,

Z above

below

A
@?u

@t
dz = !

Z above

below

@

@z

/
Au0w0

0
dz = Au0w0

99
below

> 0 ;

23



Fig 5 Example of mountain wave over Rockies Lilly et al, JAS, 1973 
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More generally, if 6h is the amplitude of the vertical displacement of an isentropic 
surface, then 

z = 4kpUN 6h2. (5 )  
From the Eliassen-Palm theorem (Eliassen and Palm 1961 ; McIntyre 1980), vertically 

propagating waves in the absence of transience and dissipation obey the condition 
t = ts at all levels. 

Using the hydrostatic dispersion relation Eq. (3), the wave’s impact on the local 
static stability and vertical shear can be written as 

NT,,,,, = N2{1 + (NGh/U) COSG} 

qtotal = q{l + R ~ ~ / ~ ( N S ~ / U )  sin @} 

(6) 

(7) 
where 6h is the amplitude of the displacement of the isentropic surface, @ the wave 
phase, r ]  = 8 U/az and Ri = p/q2 is the Richardson number. The subscript ‘total’ on the 
left-hand side of Eqs. (6) and (7) refers to the sum of the wave and background flow 
contributions. 

Equations (6) and (7) suggest that a sufficiently large isentropic displacement could 
induce local Kelvin-Helmholtz instability. This forms the basis for our wave-breaking 
mechanism and incorporates ideas both from the billow instability mechanism discussed 
by Scorer (1978), and Lindzen’s (1981) convective overturning parametrization for 
mesospheric gravity wave breaking. Further details are given in section 5 .  

It should be remarked that Eq. (7) can also be derived from a finite amplitude 
conservation equation formulated by Long (1953). Details of this derivation are given in 
Shutts (1986). 

3 4l 
2l 1 

Mean ridge 
altitude 

Lowest terrain 
altitude 1 

Horizontally averaged momentum flux (Nm-’) 

Figure 3. Mean observed profile of momentum flux over the Rocky mountains on 17 February 1970 (after 
Lilly and Kennedy 1973). 

Fig 6  
Palmer et al, QJRMS, 1986 

Observed vertical momentum flux in mountain wave
over Rockies



Fig 7  Zonal-mean zonal winds (m/s) in control simulation of 
general circulation model (GCM) without gravity-wave 

drag parameterization (season is DJF)
McFarlane, JAS, 1987
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Fig 8  Deceleration of zonal-mean zonal wind by 
orographic gravity-wave drag parameterization

McFarlane, JAS, 1987
Units: m/s/day
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Fig 9  Change in zonal-mean zonal wind (m/s) 
(simulation with gravity-wave drag minus control)

McFarlane, JAS, 1987

90N             60N            30N              0                30S              60S             90S



90N             60N             30N               0                30S               60S              90S

Fig 9  Change in zonal-mean zonal wind (m/s) 
(simulation with gravity-wave drag minus control)

McFarlane, JAS, 1987

Slowing of westerlies
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Fig 9  Change in zonal-mean zonal wind (m/s) 
(simulation with gravity-wave drag minus control)
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Probably just internal variability



Fig 10  Change in zonal-mean temperature (K)
(simulation with gravity wave drag minus control)

McFarlane, JAS, 1987
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Fig 10  Change in zonal-mean temperature (K)
(simulation with gravity wave drag minus control)
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Warming to keep thermal wind balance



Fig 11  Magnitude of orographic gravity wave drag stress 
on the atmosphere (Pa)

McFarlane, JAS, 1987
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Gravity waves 
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pled. However, one mechanism or another may serve to
largely explain a set of observations with certain wind
shear conditions or may serve to explain the generation
of a certain class of waves, such as long vertical wave-
length wave generation associated with deep convective
heating.

3.1.3. Shear Generation
[45] The excitation of gravity waves by unstable shears

has been studied for many years but remains one of the
least quantified sources of gravity wave activity. A major
challenge in these efforts was to account for the emer-
gence of gravity waves that are propagating away from
the shear layer on a timescale competitive with the most
rapidly growing Kelvin-Helmholtz (KH) instability. This
proved difficult for linear modes of instability for which
the growth rate depends on the horizontal wave number.
The subharmonic interaction, or pairing, of KH modes
was proposed by Davis and Peltier [1979] to provide such
excitation, but Fritts [1984b] showed pairing not to be an
efficient mechanism when the exterior flow is stably
stratified. By invoking a nonlinear interaction between
KH and propagating modes, however, Fritts [1984b] and
Chimonas and Grant [1984] were able to account for
rapid excitation of propagating gravity waves. This “en-
velope” radiation is essentially excitation of a gravity
wave by the packet-scale motions accompanying a
packet of coherent KH billows evolving together in an
unstable shear layer of finite horizontal extent. Two
aspects of this mechanism have been assessed more
recently in greater detail. Bühler et al. [1999] and Bühler
and McIntyre [1999] examined wave radiation from the
collapse of a mixed region due to KH billows of finite
extent and concluded that this source could not be
neglected in the momentum budget at greater altitudes.
The mechanism envisioned by Bühler et al. [1999] is
represented schematically in Figure 7. Scinocca and Ford
[2000] reexamined the nonlinear radiation from spatially
localized KH billows and concluded, like Fritts [1984b],
that envelope radiation is a viable mechanism for gravity
wave generation and likely an important contributor to
the mesospheric momentum budget.

[46] Assuming envelope radiation to be the predom-
inant shear excitation mechanism, we can infer charac-
teristic horizontal scales of tens to !100 KH wave-
lengths or a few to tens of kilometers, with horizontal
phase speeds comparable to the mean wind at the un-
stable shear layer. There is, nevertheless, some observa-
tional evidence suggesting that certain linear modes of
shear instability can be excited [Mastrantonio et al., 1976;
Lalas and Einaudi, 1976]. Under such circumstances the
gravity wave scales are determined by the character of
the shear flow and tend to be considerably larger than
KH wavelengths.

3.1.4. Geostrophic Adjustment
[47] Most evidence for gravity wave excitation accom-

panying the restoration of balanced flow, commonly
termed geostrophic adjustment, even though the balance
need not be geostrophic, comes from theoretical or
numerical treatments of adjustment processes. In such a
process, an initial or evolving unbalanced flow relaxes to
a new balanced state via both a redistribution of mean
momentum, energy, and potential vorticity and a radia-
tion of excess energy away as inertia-gravity waves. Such

Figure 5. Three-dimensional study of gravity waves gener-
ated by convection in a mesoscale model with parameterized
microphysics. (a) Vertical velocity patterns in a cross section in
the vertical (z) and zonal (x) plane at y " 250 km. (b) The x #
y cross section of vertical velocity at z " 40 km. Also shown in
Figure 5b are the surface gust front (arc-shaped solid line) and
regions of strong latent heating in the troposphere (small solid
contours). After Piani et al. [2000, Figure 4] (reprinted with
permission of the American Meteorological Society.)
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Lalas and Einaudi, 1976]. Under such circumstances the
gravity wave scales are determined by the character of
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KH wavelengths.
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need not be geostrophic, comes from theoretical or
numerical treatments of adjustment processes. In such a
process, an initial or evolving unbalanced flow relaxes to
a new balanced state via both a redistribution of mean
momentum, energy, and potential vorticity and a radia-
tion of excess energy away as inertia-gravity waves. Such
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