12.810 Dynamics of the Atmosphere

Internal gravity waves in the atmosphere
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Trapped lee waves downwind from Hawaiian Islands

GOES- 10 VIS Image 2000 UTC 24 Jan 2003

{| NOAA / NRL-Monterey



Internal gravity waves

* Basic theory of internal gravity waves will first be
introduced (see handout)

* Then discuss:
- mountain waves
- compressible gravity waves and vertical propagation

- interaction of gravity waves with mean flow



Internal gravity waves: Introductory material
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Waves on a basic state

* Basic state is an exact solution on which waves propagate

* Choose a basic state that is at rest and stably stratified:

Ug = Vg = wo = 0
bop = N?z
oo = [ by dz
* N is the buoyancy frequency (the angular frequency at which

a parcel moving vertically would oscillate)

* Full solution is basic state plus a perturbation that is the wave.
For example, for buoyancy:

b = by +



Assume small amplitude perturbations and linearize the
equations (drop terms that are squared in wave amplitude)
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Look for wavelike solutions
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where k=(k,,m) is the wavenumber vector and W is the angular frequency
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Dispersion relation for non-hydrostatic (x=1) waves
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W = __N\/ il
kQ + Z2 + mQ
Or put more simply Z )

w==+N sinvy /

Which implies that

|Cd| S N (no propagation otherwise!)



Propagation: Phase and group velocities

The phase speed in the direction of k is given by
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and the group velocity is
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A wave with group velocity upwards and to the right
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Wavy lines are isolines of b=b’+bo(z)
Black arrows show velocity



cg°k = 0: Group propagation is along phase lines!




Group velocity is upwards if phase propagation downwards!
(but both phase and group propagate to the right)

z direction is special because of gravity



K-u = 0: Fluid motions are along phase lines
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Implies that no advection of wave properties such as b:
plane gravity wave is a nonlinear solution!



From a localized source oscillating with a single frequency w, the waves form rays
(the “St Andrews’ cross”) at angles v = sin™' (w/N) to the horizontal, with the
phase propagation across the rays:
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Animation courtesy
Glenn Flierl
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k=(k,m)=(2,2); ¢,=(0.18,-0.18)



Relation of frequency to buoyancy frequency N

Z A

w = LN sin-~y
/

Implications of keu = 0

(fluid motions perpendicular to wavevector)
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v — /2 motions are vertical and w — N

v — 0 motions are horizontal w — ()



Relation of frequency to buoyancy frequency N

Z A

w = LN sin-~y
/

Implications of keu = 0

(fluid motions perpendicular to wavevector)

¢

v — /2 motions are vertical and w — N

v — 0 @areho@wﬁo

No resistance from stratification!




Hydrostatic case (set x=0)

N
:—\//{32 [2 =+N tan vy /
TN

Only a good approximation to
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w = /N sin~y
when v is smallie. k2 4+ ]2 <« m?2

This is true when vertical length scales are small
compared to horizontal length scales



Mountain waves
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Fig | Streamlines over periodic mountains Purron, AMS, 1990



a

=3 Evanescent waves
(e.g. weak stratification)

b

Vertically propagating waves
(e.g. strong stratification)

Fig | Streamlines over periodic mountains Purron, AMS, 1990



(a)

=™ Evanescent waves
(e.g. weak stratification)

o phase tilt with hei

(b)

Vertically propagating waves
(e.g. strong stratification)

Phase tilt with height
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Fig | Streamlines over periodic mountains Purron, AMS, 1990
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F1G. 4.4. Streamlines in steady airflow over an isolated ridge when the vertical variation in the Scorer parameter permits trapped waves.

Fig2 Trapped lee waves

(e.g. weaker stratification)

(e.g. stronger stratification)

Durran, AMS, 1990



e —‘-—-’J
6 | :
= _—— .
5— ‘\/\/—\/—\/;r
4b

HEIGHT (km)

CROSS-MOUNTAIN DISTANCE (km)

FiG. 4.4. Streamlines in steady airflow over an isolated ridge when the vertical variation in the Scorer parameter permits trapped waves.

Fig2 Trapped lee waves

(e.g. weaker stratification)
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Durran, AMS, 1990
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Because broad
ridge, flow is
periodic
in the vertical
(where does

P the ridge repeat
itself?)
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Fig 3 VVaves over a broad isolated ridge Durran, AMS, 1990



Introduction to pressure coordinates

e |[f make the hydrostatic approximation, then often useful to change
from z to p as the vertical coordinate

e Advantages:
- No time derivative in mass continuity equation
- No I/density in horizontal pressure force term

e Disadvantages:
- Lower boundary pressure is not fixed in time
- Static stability parameter not roughly constant in the vertical

e Note that:
- Unit vector in vertical remains in the same direction

- Derivatives in x and y change because now holding p rather than z
constant



Introduction to pressure coordinates (handout)

Vertical velocity

The vertical velocity in pressure coordinates is given by w = Dp/Dt. This is analogous
to how we define the horizontal velocities (v = Dx /Dt and v = Dy/Dt) or the vertical
velocity in height coordinates (w = Dz/Dt).

Lagrangian derivative

The Lagrangian derivative is expressed in pressure coordinates as

2—2+u V+w2
Dt Ot op’

where u = (u,v). Both the horizontal gradient V and the time derivative (9/0t) are
taken at constant p rather than z.



Introduction to pressure coordinates (handout)

Mass continuity equation

Mass conservation for a material element of air may be written as

DpéV_O
Dt

where 0V = 0xdyodz is the volume of the material element. Hydrostatic balance gives
us that pdz = —dp/g, such that

Doxdyop 0
Dt

We then use that Dox/Dt = du where du is the change in u across the material
element in the z direction. Similarly Ddy/Dt = dv and Ddp/Dt = dw. Substituting

gives that

5_u+6v+5w_0
Sxr  dy dp

In the limit of an infinitesimal parcel of air, this then gives the mass continuity
equation in pressure coordinates:

ou Ov Ow

%+ay+8p:0.




Introduction to pressure coordinates (handout)

Pressure force in the horizontal

The pressure force term in the horizontal momentum equation in z coordinates may
be written as

1
T vpzv
p( )

where the subscript z make explicit that horizontal derivatives are taken at constant z.
To convert this to pressure coordinates, we first write the general rule for converting a
derivative with respect to x from the z vertical coordinate to the p vertical coordinate:

a9\ (9 N 0z\ O
oz ) - \0z ), dx ), 0z
Applying this rule to the derivative of p gives that
([ Op 0z\ Op
- <%)+ <ax> 5=
Using hydrostatic balance then gives that
_Lfopy __ (99
p\ox /), dr ) )’

where ¢ = gz is the geopotential. Finally, considering derivatives with respect to
both x and y gives that

—% (Vp). = — (Vo),.



Introduction to pressure coordinates (handout)

Hydrostatic balance (vertical momentum equation)

Hydrostatic balance in z coordinates (Op/0z = —pg) is more conveniently written
using the ideal gas law as

0¢  RT

Ip p

Thermodynamic equation

The thermodynamic equation in the absence of diabatic heating and written in terms
of potential temperature (f) remains:

Dy

—Z 0.
Dt



Introduction to pressure coordinates (handout)

Summary

The equations for horizontal velocity, hydrostatic balance, mass continuity and poten-
tial temperature in pressure coordinates in the absence of friction, diabatic heating,

and planetary rotation are:

DV
Jdp _ RT
Op p
Ow
=~ 0

V qu@p :
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Fig4a  Contours of potential temperature in a breaking
gravity wave



Convective
instability
here

Fig4a  Contours of potential temperature in a breaking
gravity wave



Non-acceleration theorem for stationary gravity waves
(handout)

We have seen that for a 2-D flow (in  and z) the mean state is affected by waves
through convergence of vertical fluxes of temperature (pw’6’) and momentum (pw'v/)
by the waves. The overline denotes a zonal mean and the primes denote wave quan-
tities. In this handout, we will derive expressions for how these fluxes vary in the
vertical following Eliassen and Palm 1961.

We assume that the waves are stationary, inviscid, adiabatic and small amplitude.
The assumption of small-amplitude waves allows us to use the linearized equations
of motion to calculate the wave fluxes. The wave fluxes will change the mean state,
but the changes in mean state are considered as a higher-order correction in our
calculation of the fluxes.



Non-acceleration theorem for stationary gravity waves
(handout)

Consider a basic state defined by zonal wind Uy(z) and potential temperature 6y(z2).
We assume the basic state is statically stable such that % > (. Given the assumption
of stationary waves (0/dt = 0), the linearized equations in log-pressure coordinates
are:

o' U, O

R e (5)
ou 10puw'
- = — §
o0x +,0 0z 0 (6)
00’ ,000
UO%"_UJE—O; (7)
/ H/
0¢' _ RlI& _ (8)

0z H



Non-acceleration theorem for stationary gravity waves
(handout)

First consider the vertical wave flux of temperature (pw’6"). Multiple Eq. 7 by 6’ and
take the zonal average (i.e., average in x):

00’

00,

2T g0
Yo Ox T 0z =0,
1 80’2 06,
/6/ -
= Uog 9 8:1: 0z =0,
00,
/9/ - O
= W - :

where the last step follows because we assume the waves are periodic in . Thus,
we have zero vertical temperature flux (pw’6#’ = 0) by our stationary and adiabatic
waves.



Non-acceleration theorem for stationary gravity waves
(handout)

Next we consider the vertical momentum flux (pw’u’). This flux is generally not zero,
but how does it vary in the vertical?

Multiply Eq. 5 by v’ and average in x to give an equation that is the budget of kinetic
energy of the waves (if we had not assumed stationary waves there would be a term

a(u'?12)/t):

ou’ S U 09

09

Thus, the pressure force term (in the form of %—ﬁ) in the zonal momentum equation

causes w'u’ # 0 unlike for w’é’.



Non-acceleration theorem for stationary gravity waves
(handout)

Several steps later...

The final form of our energy equation is

; /an Opw’—gb’ o
ow'u P + 3, =0, (9)

where the first term represents conversion between wave and mean energy, and the
second term is the divergence of the vertical wave energy flux. We have found a
relation between the vertical momentum flux pw’v’ and the vertical wave energy flux
pw'@’, but we will need another constraint to find either flux individually.




Non-acceleration theorem for stationary gravity waves
(handout)

We go back to the wave zonal momentum equation (Eq. 5) and group the z-derivatives

together:

0 , ) ,0Uy

We next multiply by Upu’ 4+ ¢' (last time we multiplied by ') to give

o1, . U, Uy
%[§(Uou—l—¢)]—l-lfou o Twe—==0.

Several steps later...

Uppu'w’ + pw'¢’ = 0. (10)




Non-acceleration theorem for stationary gravity waves
(handout)

Substituting for pw’¢’ from Eq. 10 into Eq. 9 gives that:

—1/ 0 E—
pw'! 8—20 — a(UOpu’w’) =0
oU, 0U, 0
Y i PV N R & S T —
= pw'u P 5, Pw anz(puw) 0.
Our final and simple result is that
Uog(pu’w’) = 0. (11)
0z

The vertical wave momentum flux pu/w’ is constant in the vertical (Opu/w’/0z = 0)
except where Uy = 0. Since we have previously shown that
ou 10

o9 —;g(ﬂw w'),

we conclude that small-amplitude, adiabatic, inviscid, and stationary waves do not
affect the mean flow except where Uy, = 0.



Fig 4b

“Cat’s eye” flow at a critical level
Contours are the streamfunction in a frame with ¢=0
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Example of mountain wave over Rockies

Lilly et al, JAS, 1973
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Fig 6 Observed vertical momentum flux in mountain wave

over Rockies

Palmer et al, QIRMS, 1986
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(simulation with gravity-wave drag minus control)
McFarlane, JAS, 1987



Slowing of westerlies
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Probably just internal variability
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Warming to keep thermal wind balance
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FI1G. 21. Net stress drop over the vertical model domain due to the wave drag force. Contours are for 0.05 Pa and larger with an interval of 0.1 Pa.

Fig | | Magnitude of orographic gravity wave drag stress
on the atmosphere (Pa)

McFarlane, JAS, 1987



Fig 12a

Gravity waves

E
= generated by
N .
a squall line
and

propagating
vertically and
horizontally
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Fic. 2. The squall line simulation at 4 h of simulation time. Shading represents contours of vertical velocity.
(Contrast has been enhanced to show the qualitative structure; the full range of vertical velocities is +20 to —5
m s~'.) Thin lines are isentropes (at 15-K intervals), and the thick line shows the cloud outline (cloud water

mixing ratio = 1 X 107 g g™'). The tropopause is at 12—13 km.
Alexander et al, JAS, 1995
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Fig 12b

Gravity waves
at z=40km

Three-dimensional study
of gravity waves
generated by convection
in a mesoscale model with
parameterized
microphysics.(b) The x -y
cross section of vertical
velocity at z 40 km. Also
shown are the surface gust
front (arc-shaped solid
line) and regions of strong
latent heating in the
troposphere (small solid
contours).

Fritts et al, Rev. Geophs. 2003
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Fig 12b

Horizontal-
vertical cross
section

Three-dimensional study
of gravity waves
generated by convection
in a mesoscale model with
parameterized
microphysics. (a) Vertical
velocity patterns in a cross
section 1n the vertical (2)
and zonal (x) plane at y

250 km.

Fritts et al, Rev. Geophs. 2003



