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Figure S1. Error of the RF trained on the control climate as a function of the number of trees

in the ensemble (n estimators). The error is measured by 1-R2, and it is estimated using 10-fold

cross-validation on the training dataset. The other hyper-parameters are at their default values

of min sample leaf=10 and n train=700, 000.
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Figure S2. As in Fig. S1 but showing the error as a function of the number of training samples

used (n train). The minimum value of n train shown is 10,000. The other hyper-parameters are

at their default values of min sample leaf=10 and n estimators=10.
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Figure S3. As in Fig. S1 but showing the error as a function of the minimum number of

training samples required to be at each leaf node (min sample leaf). The other hyper-parameters

are at their default values of n esimators=10 and n train=700, 000.
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(a) Temperature tendency
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(b) Specific-humidity tendency
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Figure S4. As in Fig. 1 but for the R2 of the RF trained on the warm climate applied to the

test dataset from the warm climate.
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(a) Original scheme
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(b) Random forest
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(c) No conv. scheme
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Figure S5. Example snapshots of daily precipitation from simulations of the control climate

with (a) the RAS convective parameterization, (b) the RF parameterization, and (c) no con-

vection scheme. Total precipitation is shown in each case (including large-scale and convective

contributions). The colorbar is saturated at 150 mm day−1. Note that these are snapshots from

freely running simulations and should not be expected to agree in detail.
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(a) Original scheme
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Figure S6. Zonal- and time-mean relative humidity versus latitude and vertical level (σ) in

the control climate for simulations with (a) the RAS parameterization and (b) the RF parame-

terization. The contour interval is 0.1. The difference between results shown in (a) and (b) over

all latitudes and levels has a maximum absolute value of 0.18 and a root-mean-square value of

0.04.
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Figure S7. As in Fig. 5, but showing the response to climate change of relative humidity.

The contour interval is 0.04 and negative contours are dashed. The difference between results

shown in (a) and (b) over all latitudes and levels has a maximum absolute value of 0.11 and a

root-mean-square value of 0.02.
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(a) Trained on each climate separately
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(c) Trained on control climate
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Figure S8. The impact of training on different climates on the response to climate change

as in Fig. 6, but here showing the mean tropical warming (averaged over 20◦S to 20◦N) as a

function of vertical level σ.
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(a) Original training choices
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(b) Modified training choices
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Figure S9. Impact of training choices on simulations in which the RF replaces both the moist-

convection and large-scale condensation schemes. Shown are the zonal- and time-mean relative

humidity in the control climate when: (a) specific humidity is used as the humidity feature, the

output scaling for the specific humidity tendency is L, and the sampling is weighted by cosine

latitude, (b) relative humidity is used as the humidity feature, the output scaling of the specific

humidity tendency is Lσ−3, and sampling is not weighted by cosine latitude. The contour interval

is 0.1 and negative contours are dashed.
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(a) Temperature tendency
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Figure S10. As in Fig. 1, but for the RF trained to predict the sum of the tendencies from

the moist convection scheme and the large-scale condensation scheme.



X - 8 O’GORMAN AND DWYER: MACHINE LEARNING FOR SUBGRID MOIST CONVECTION

0 50 100 150
Large-scale+convection schemes (mm day 1)

0

50

100

150

Ra
nd

om
 fo

re
st

 (m
m

 d
ay

1 )

Figure S11. As in Fig. 2, but using the RF to predict the sum of the precipitation from the

moist convection scheme and the large-scale condensation scheme. R2 is 0.93 and the mean bias

is −3 × 10−2 mm day−1.
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(a) Tropical equivalent potential temperature
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(b) Tropical eddy kinetic energy
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Figure S12. As in Fig. 3, but the RF in the GCM replaces both the moist convection scheme

and the large-scale condensation scheme.
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(a) Change in mean precipitation
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Figure S13. As in Fig. 4, but the RF in the GCM replaces both the moist convection scheme

and the large-scale condensation scheme.


