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[1] The closure problem of turbulence arises because
nonlinear interactions among turbulent fluctuations (eddies)
lead to an infinite hierarchy of moment equations for flow
statistics. Here we demonstrate with an idealized general
circulation model (GCM) that many atmospheric flow
statistics can already be recovered if the hierarchy of
moment equations is truncated at second order,
corresponding to the elimination of nonlinear eddy-eddy
interactions. Some, but not all, features of the general
circulation remain the same. The atmospheric eddy kinetic
energy spectrum retains a �3 power-law range even though
this is usually explained in terms of an enstrophy cascade
mediated by nonlinear eddy-eddy interactions. Our results
suggest that it may be possible to construct fast general
circulation models that solve for atmospheric flow statistics
directly rather than via simulation of individual eddies and
their interactions. Citation: O’Gorman, P. A., and T. Schneider

(2007), Recovery of atmospheric flow statistics in a general

circulation model without nonlinear eddy-eddy interactions,

Geophys. Res. Lett., 34, L22801, doi:10.1029/2007GL031779.

1. Introduction

[2] The study of turbulent flows has focused on idealized
isotropic and homogeneous geometries in which mean
flows vanish and nonlinear interactions among eddies are
of central importance in determining the higher-order flow
statistics [McComb, 1992]. Large-scale (>500 km) turbu-
lence in the atmosphere is an example of turbulent flow in
which other effects such as interactions of eddies with the
mean flow are important, and for which, as the results
presented here suggest, a focus on nonlinear eddy-eddy
interactions may be inappropriate. The most energetic
transient eddies in the atmosphere—the familiar cyclones
and anticyclones—have a length scale of �3000 km
[Shepherd, 1987; Straus and Ditlevsen, 1999]. Baroclinic
instability is the main energy source for these eddies, and
the length scale of the linearly most unstable wave (given by
the Rossby deformation radius) and the energy-containing
eddy length scale are of similar magnitude. The inverse
eddy energy cascade to length scales much larger than
the Rossby deformation radius that can occur in two-
dimensional or quasigeostrophic models is not seen in the
atmosphere, although energy transfer from eddies to the
zonal-mean flow at scales larger than the Rossby deforma-
tion radius does occur [Shepherd, 1987]. Simulations and
theory suggest that the absence of this kind of inverse
energy cascade is not an accident but comes about through

the effect of the eddies on the mean thermal structure of the
atmosphere [Schneider and Walker, 2006]. Thus, nonlinear
eddy-eddy interactions (e.g., the advection of eddy fluctua-
tions in temperature by eddy fluctuations in the wind),
which could lead to an inverse energy cascade, may be
relatively unimportant in determining the energy-containing
length scale of atmospheric eddies.
[3] Eddy-eddy interactions are also commonly invoked to

explain the shape of the atmospheric eddy kinetic energy
spectrum, which has an approximate n�3 power-law range
in spherical wavenumber n at length scales smaller than the
energy-containing eddy length scale [Boer and Shepherd,
1983; Nastrom and Gage, 1985; Straus and Ditlevsen,
1999; Schneider and Walker, 2006]. The n�3 range is
commonly explained by analogy with two-dimensional or
quasigeostrophic models of atmospheric flow, which can
exhibit an enstrophy cascade with an n�3 energy spectrum
[Charney, 1971; Salmon, 1998]. Enstrophy is proportional
to the mean-square vorticity (in two dimensional models) or
potential vorticity (in quasigeostrophic models), and iner-
tial-range cascades involving eddy-eddy interactions are
postulated for it and the kinetic energy because they are
both quadratic invariants of the inviscid flow [Kraichnan,
1967]. An n�3 spectrum might also be expected over a
wavenumber range in which vorticity or potential vorticity
is effectively advected as a passive scalar. Such an energy
spectrum is sufficiently steep that spectrally nonlocal eddy-
eddy interactions may be important (such as strain of small-
scale vorticity by large-scale eddies), leading to a logarithmic
correction to the power-law spectrum [Kraichnan, 1971;
Salmon, 1998]. In the atmosphere, however, an inertial range
in which only eddy-eddy interactions are important does not
occur. Other terms such as conversion from potential to
kinetic energy, transfer of energy to the mean flow, and eddy
dissipation (primarily in the planetary boundary layer) are
known to be important in the spectral energy budget over a
range of length scales [Lambert, 1987; Straus and Ditlevsen,
1999]. Thus, it is not clear why the energy spectrum of
the atmosphere should follow an n�3 power law, and the
enstrophy-cascade explanation for the atmospheric energy
spectrum has been questioned [Vallis, 1992]. Furthermore,
the baroclinic lifecycle experiments of Gall [1976] suggest
(albeit indirectly) that the shape of the energy spectrum may
not depend on eddy-eddy interactions.
[4] Rather than studying the processes that determine the

mean state and energy spectrum in two-dimensional or
quasigeostrophic systems, we use an atmospheric general
circulation model (GCM), which more faithfully resolves
the large-scale turbulence of the atmosphere by representing
all important terms in the spectral energy budget and by
allowing for dynamical changes in the thermal stratification.
In removing the eddy-eddy interactions in a GCM, we
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directly test their role in determining the eddy length scale,
the eddy energy spectrum of atmospheric turbulence, and
the general circulation of the atmosphere. The removal of
eddy-eddy interactions represents a turbulence closure
equivalent to a truncation of the moment equations at
second order by setting third-order eddy moments (third-
order cumulants) to zero [Herring, 1963; Marston et al.,
2007]. While we eliminate the nonlinear interactions that
involve only eddies, we do retain the effects of eddies on the
mean flow because of the important role of eddy heat and
momentum fluxes in equilibrating the mean flow.

2. Model Description

[5] We use the idealized GCM of Schneider and Walker
[2006]. The model has a thermally insulating and uniform
lower boundary, and the forcing is time-independent and
axisymmetric. Consequently, there are no stationary waves,
but the transient eddies that are the focus of this study are
well resolved.
[6] The idealized GCM integrates the primitive equations

on the sphere using the pseudospectral method [Bourke,
1974], with a horizontal resolution of T127 and with 30
unequally spaced s-levels in the vertical. The planetary
boundary layer has a fixed height of 2.5 km, and surface
fluxes of momentum are calculated using a constant rough-
ness length of 5 cm. Radiative processes are represented by
linear relaxation of temperatures toward a radiative-equilib-
rium state that is axisymmetric, statically unstable in the
lower troposphere, and which has a pole-to-equator surface
temperature contrast of 90 K. The GCM does not account
for moist processes, but a quasi-equilibrium convection
scheme mimics some effects of moist convection by relax-
ing a temperature profile to a convective profile with lapse
rate 6.8K km�1 when the temperature profile is less stable
than the convective profile; see Schneider and Walker
[2006] for details. An exponential cutoff filter [Smith et
al., 2002] is applied to all fields for numerical stability, with
a damping timescale of 2 hours at the smallest resolved
length scale and with zero damping for wavenumbers
smaller than 50.
[7] Simulations with and without eddy-eddy interactions

were spun up over 600 days to reach statistically steady
states, and averages were taken over a subsequent 400 days.

3. Removal of Eddy-Eddy Interactions

[8] We decompose flow fields into a mass-weighted
zonal mean and eddies. Defining eddies as fluctuations
about a zonal mean is not the only possible choice, but it
is computationally more efficient than, for example, using a
temporal mean.
[9] Eddy-eddy interactions are removed by modifying the

evolution equations for temperature and horizontal momen-
tum so that eddy fluctuations are not advected by the eddy
wind. Modifications are made only to nonlinear terms
related to horizontal and vertical advection and to the metric
terms in the horizontal momentum equations. These mod-
ifications do not alter the evolution equations for mean
temperature or mean momentum, but they do alter the
evolution equations for higher moments.

[10] For example, we do not allow for the advection of
temperature fluctuations by wind fluctuations except insofar
as it affects the evolution of the mean temperature. The
meridional advection of temperature, T, contributes to the
evolution of temperature in the full GCM as
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where v is the meridional wind and y is meridional distance.
We denote by T and T0 the zonal-mean and eddy
temperatures, respectively, with T = T + T0, and with a
similar decomposition for the three-dimensional wind field.
The surface pressure acts as a density in s-coordinates, and
so zonal means are defined on s-levels with a surface
pressure-weighting. Although we use Cartesian coordinates
and derivatives here for simplicity, the equations of motion
in the GCM are solved in spherical coordinates. The
advection of temperature in the simulation without eddy-
eddy interactions is written as
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which includes only the mean part of the nonlinear eddy-
eddy term.
[11] Taking the zonal mean of surface pressure times the

modified evolution equations gives the result that the
evolution equations for mean temperature and mean mo-
mentum are unchanged. Although we use surface pressure-
weighted means, the global energy (the sum of enthalpy and
horizontal kinetic energy in the hydrostatic approximation)
is not quite conserved because of a term involving the
horizontal eddy convergence of mass. This term arises
because we define eddy and mean quantities on s-levels
and would not arise if the vertical coordinate was pressure
(in which case, however, boundary terms would arise,
which present similar difficulties).

4. Comparison of Simulations

4.1. Instantaneous Vorticity Fields

[12] Figure 1 shows typical instantaneous vorticity fields
in the mid-troposphere in the full simulation and in the
simulation without eddy-eddy interactions. In both simula-
tions, as on Earth, most of the eddies are generated by
baroclinic instability in extratropical storm tracks. The
vorticity field of the full simulation is being wrapped and
stretched into filaments by the cyclones and anticyclones,
but the eddies in the simulation without eddy-eddy inter-
actions do not advect themselves. The vorticity structures
are being sheared apart by the mean zonal wind, which is an
example of an important eddy-mean interaction that is
present in both simulations [Shepherd, 1987; Huang and
Robinson, 1998]. The synoptic variability (e.g., frontal
occlusions) and higher-order statistics of the flow are clearly
affected by eddy-eddy interactions, but below we show that
several important low-order statistics are similar in both
simulations.
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4.2. Eddy Statistics

[13] The vertically averaged eddy kinetic energy
spectrum gives the contribution at each horizontal wave-
number to the eddy kinetic energy and is shown in Figure 2
for both simulations. The spectra shown are defined using
spherical wavenumbers [Boer and Shepherd, 1983] and are
calculated as the mass-weighted vertical average of the eddy
kinetic energy spectrum on s-levels. Contributions from
zonal wavenumber zero are omitted because they are
associated with the zonal-mean flow. The total eddy kinetic
energy is greater by a factor of 2.1 in the simulation without
eddy-eddy interactions, representing a significant difference
between the two simulations. We rescale the spectrum from
the simulation without eddy-eddy interactions by this factor
in Figure 2 to facilitate comparison of the shapes of the
spectra. A possible explanation for the discrepancy in total
eddy kinetic energy is that the scrambling of structures
by the eddy-eddy interactions reduces the efficiency of
conversion from potential to kinetic energy, leading to
smaller eddy kinetic energy in the full simulation.
[14] The length scales of the dominant eddies appear

comparable in the two vorticity fields (Figure 1), and this is
quantitatively confirmed by the eddy kinetic energy spectra
(Figure 2). The eddy kinetic energy spectrum peaks at
spherical wavenumber 8 in both simulations, so that the
energy-containing eddy length scale is almost exactly the

same. The similarity of the eddy length scale in both
simulations implies that an inverse energy cascade involv-
ing eddy-eddy interactions is not important in setting the
eddy length scale. Consistent with this picture, the estimated
Rossby deformation radius corresponds to wavenumbers 7
in the full simulation and 10 in the simulation without eddy-
eddy interactions. This suggests that conversion from
potential to kinetic energy occurs at comparable length
scales in both simulations. The Rossby deformation radius
is estimated following the method of Schneider and Walker
[2006] using near-surface static stabilities and temperature
gradients, except that we determine the tropopause using the
conventional criterion as a 2 K km�1-isoline of temperature
lapse rate.
[15] It is striking that the shape of the energy spectrum in

the full simulation is replicated over a wide range of
wavenumbers in the simulation without eddy-eddy interac-
tions. The approximate n�3 power-law range in the full
simulation extends from the wavenumber at the maximum
of the energy spectrum to a roll-off at spherical wave-
numbers greater than �60 caused by the damping filter that
is used to stabilize the simulations at small scales. The
energy spectrum of the simulation without eddy-eddy inter-
actions also exhibits an approximate n�3 power-law range,
but at spherical wavenumbers greater than �40, there is
evidence that the spectral decay becomes shallower. The

Figure 1. Typical instantaneous vorticity fields (10�5 s�1) in (a) the full simulation and (b) the simulation without eddy-
eddy interactions. The horizontal surface shown is in the mid-troposphere at s = 0.5. The fields are shown at times after the
simulations have reached statistically steady states.
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shallowing of the spectrum is reminiscent of the n�5/3

mesoscale range that is seen in observational data near the
tropopause [Nastrom and Gage, 1985], but here it is more
likely an indication that eddy-eddy interactions prevent a
build-up of energy at these relatively small length scales.
[16] That the shape of the eddy energy spectrum is

recovered without eddy-eddy interactions over a wide
wavenumber range helps resolve the paradox that the
atmospheric energy spectrum has the power-law decay that
would result from a enstrophy cascade in an inertial range
even though there are significant terms in the atmospheric
spectral energy budget other than those related to eddy-eddy
interactions. Our results show that these other terms would
by themselves lead to a similar energy spectrum. We also
found similar results for other parameter settings in the
GCM and using an idealized GCM [Held and Suarez, 1994]
with different radiation and boundary layer schemes and
without a convection scheme. Therefore, our results for the
energy spectrum do not appear to be artifacts of specific
parameter settings or parameterizations. The approximate
n�3 spectrum in the simulation without eddy-eddy inter-
actions may be explained by an unconventional enstrophy
cascade in which the zonal-mean component plays a central
role [cf. Bartello and Warn, 1988], but this is difficult to
assess given the number of important terms in the spectral
energy budget. Although we have only considered the
atmosphere here, similar considerations may apply to the

energy spectrum in the ocean at length scales smaller than
the oceanic Rossby deformation radius.
[17] The eddy energy spectrum of the simulation without

eddy-eddy interactions (Figure 2) is more jagged than the
spectrum of the full simulation. One effect of eddy-eddy
interactions, then, is to smooth the spectrum by transferring
energy between wavenumbers. Eddy-eddy interactions
also tend to isotropize the eddies in the horizontal. The
two-dimensional spectral energy distribution reveals
isotropization of the eddy energy in the full simulation for
length scales smaller than the eddy length scale but anisot-
ropy at all length scales in the simulation without eddy-eddy
interactions.

4.3. Mean Circulations

[18] The general circulation of the simulation without
eddy-eddy interactions shares many features with that of the
full simulation, but there are also significant differences.
The mean zonal wind in both simulations exhibits upper-
level westerly jets, which illustrates that extratropical jets
can form as a result of eddy-mean flow interactions alone,
without nonlinear eddy-eddy interactions (Figure 3). How-
ever, the simulation without eddy-eddy interactions has a
second jet in each hemisphere, and the Eulerian-mean
circulation has corresponding extra eddy-driven cells. The
mean circulation of the simulation without eddy-eddy
interactions is compressed in the meridional direction rela-
tive to that of the full simulation. A possible explanation is
that although most eddy energy resides at the energy-
containing eddy length scale in the full simulation, and
there is no general cascade of energy to larger scales,
upscale energy transfer can still be expected to occur in
the region of spectral space close to zonal wavenumber zero
[Rhines, 1975; Vallis and Maltrud, 1993], leading to eddy

Figure 2. Vertically averaged eddy kinetic energy spec-
trum vs. spherical wavenumber for the simulation without
eddy-eddy interactions (solid line) and the full simulation
(dashed line). The total eddy kinetic energy of the
simulation without eddy-eddy interactions is 2.1 times
greater, and its energy spectrum has been divided by this
factor for ease of comparison of the spectral shapes.
Contributions from zonal wavenumber zero (the zonal
mean) are omitted in calculating the eddy energy spectra.
The solid straight line shows a reference power law of n�3.

Figure 3. Mean eastward wind (m s�1) in the meridional
plane in (a) the full simulation and (b) the simulation
without eddy-eddy interactions. The mean is a zonal, time,
and interhemispheric average with mass weighting. The
thick solid lines are the zero-wind lines.
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energy at larger meridional length scales, which can then
interact with the zonal mean flow. Consistent with this
explanation, the energy spectrum of the full simulation at
small wavenumbers (<8), while relatively small in magni-
tude, is larger than the rescaled energy spectrum of the
simulation without eddy-eddy interactions (Figure 2).

5. Conclusions

[19] We have shown that eddy-eddy interactions are not
essential for several features of large-scale flow in the
atmosphere, although they are important for some features,
such as the magnitude of the eddy kinetic energy. Our
results indicate that the eddy length scale is not directly
determined by eddy-eddy interactions, and so it may be
possible to make simple modifications to the simulation
without eddy-eddy interactions to better match the full
simulation. For example, the addition of stochastic noise
and damping to the linearized equations of motion has been
shown to capture some of the effects of eddy-eddy inter-
actions in a GCM [Zhang and Held, 1999] and in quasigeo-
strophic models [Delsole and Farrell, 1996]. This also
opens up the possibility of constructing a GCM in which
climate statistics are obtained by solving a closed set of
moment equations directly rather than by explicitly resolv-
ing eddies [Marston et al., 2007], although further approx-
imations might be needed. Such a GCM would have an
advantage in terms of conceptual simplicity. It could also be
computationally more efficient than a full GCM, particular-
ly for simulations with statistical zonal symmetry [Marston
et al., 2007].
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Dell cluster.
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