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1 Introduction

1.1 Lorenz’s view

During the past three centuries, the prevailing ideas about the general
circulation of the earth’s atmosphere have evolved in a stepwise manner.
Early in each step, a new theoretical idea is formulated. Late in each
step, the idea gains general acceptance, but, more or less concurrently,
new observations show that the idea is wrong. (Lorenz, 1983)

1.2 The general circulation: 1735 (Hadley)

See sketches in Lorenz (1983)

• Zonal Coriolis force

• Surface easterly and westerly winds

• Angular momentum balance

• Equatorward drift in midlatitudes!

1.3 The general circulation: 1857 (Thompson)

• Meridional Coriolis force

• Indirect cell

• Also Ferrel 1859

• 1900 cloud study: no upper level poleward flow in extratropics!

... more cells(!), then angular momentum and heat transport by eddies (Jeffries
1926, Starr 1948, and others)...

1.4 The general circulation: 1980-2001 (ERA40)

See Figure 1.1.
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1. Introduction
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Figure 1.1: Based on data from ERA40

1.5 The general circulation: recent trends (1980-2005)

• See Figure 2 of Siedel et al. (2008)

• An update to Lorenz’s epistomological theory?

1.6 Course aim

Characterize the mean circulations, variability, and energy, momentum, water, and
entropy budgets of the atmosphere and how they may change.
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2 Some mathematical machinery

2.1 Transient and Stationary eddies

Note: this section follows Peixoto and Oort (1992), section 4.1
We will denote the time mean of any quantity A as

A =
1

τ

∫ τ

0

Adt

where the time interval τ could be a month, a season, a year, etc. We can always
express A as the sum of the mean plus an anomaly:

A = A+ A′

It follows that the mean of the anomaly must be zero:

A′ = 0

.
We will frequently be taking the mean of the product of two quantities, which we

can write

AB = (A+ A′)(B +B′)

= AB + A′B′

The second term on the RHS above is the covariance of A and B, which can also be
written

A′B′ = r(A,B)σ(A)σ(B) (2.1)

where r(A,B) is the correlation coefficient and σ(A), σ(B) are the standard deviations
of A and B.

Most atmospheric fields are more uniform (in a statistical sense) along latitude cir-
cles than meridionally (with some notable exceptions such as the Walker circulation).
We will therefore assume a zonally symmetric distribution as a first approximation,
and take averages around latitude circles. Note that the fundamental basis for this
assumption is Earth’s rotation, which ensures that the daily-averaged insolation is
zonally symmetric. (This would not be a good average for a tidally-locked planet, for
example).
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2. Some mathematical machinery

We denote the zonal mean with square brackets [A], and note that we can decom-
pose A into mean and anomaly in the same way as we did for the time mean:

[A] =
1

2π

∫ 2π

0

Adλ

A = [A] + A∗

[A∗] = 0

Now combining the two averaging operators, we can decompose A into four com-
ponents:

A = [A] + A∗

= [A+ A′] + (A+ A′)∗

= [A] + [A′] + A∗ + A′∗

where [A] is the zonally symmetric part of the time averaged quantity; A∗ = A− [A]
is the asymmetric part of the time averaged quantity (e.g. stationary eddies or
land-ocean contrast); [A′] = [A] − [A] represents instantaneous fluctuations of the
symmetric part (e.g. fluctuations of the zonal-mean circulation); and finally A′∗

represents transient, asymmetric eddies.
Now consider [AB] (e.g. the total flux or variance), noting that [AB] = [AB]. As

an example, take [vT ], the poleward heat flux. First, decompose each term into mean
and anomaly in time, and expand:

vT = (v + v′)(T + T ′)

= vT + v′T ′ + v′T + vT ′

Now take the time average:

vT = vT + v′T ′

(the other terms drop out of the average).
But we can also decompose the time-mean terms into zonal mean and anomaly:

v = [v] + v∗

T = [T ] + T
∗

so we can write
vT = [v][T ] + v∗T

∗
+ v∗[T ] + [v]T

∗
+ v′T ′

and finally, taking the zonal mean, once again the cross terms drop out of the average:

[vT ] = [v][T ] + [v∗T
∗
] + [v′T ′]

We will use this decomposition often. We will refer to the various terms as follows:

[vT ] Flux by all motions

10



2.1. Transient and Stationary eddies

[v][T ] Flux by steady symmetric circulations

[v∗T
∗
] Flux by stationary eddies

[v′T ′] Flux by transient eddies

Note that this expression is not fully decomposed: the transient eddy term [v′T ′]
can be rewritten using

v′ = [v′] + v′∗

T ′ = [T ′] + T ′∗

v′T ′ = [v′][T ′] + v′∗T ′∗ + v′∗[T ′] + [v′]T ′∗

[v′T ′] = [v′][T ′] + [v′∗T ′∗]

In word form, we can say that the flux by transient eddies is comprised of the flux
by transient meridional circulations and transient asymmetric eddies.

Putting this all together, the full decomposition of the flux is therefore

[vT ] = [v][T ] + [v∗T
∗
] + [v′][T ′] + [v′∗T ′∗]

and we identify the four terms on the RHS as, respectively, the flux by steady sym-
metric circulation, the flux by stationary eddies, the flux by transient symmetric
circulations, and the flux by transient asymmetric eddies.

An alternative decomposition can be derived by reversing the order we followed
above, and decomposing first with respect to zonal mean:

[vT ] = [v][T ] + [v]′[T ]′ + [v∗T ∗]

where the terms of the RHS are respectively the flux by steady symmetric circulations,
the flux by transient symmetric circulations, and the flux by asymmetric eddies (both
transient and steady).

The generic decomposition of [AB] becomes slightly simpler when A = B. For
example, we might consider the meridional wind variance (which contributes to kinetic
energy):

[v2] = [v]2 + [v∗2] + [v′2]

where the terms on the RHS are the contributions due to, respectively, steady sym-
metric circulation, stationary eddies, and transient eddies. The transient eddy term
can be decomposed further into a transient symmetric and transient asymmetric com-
ponent:

[v′2] = [v′]2 + [v′∗2]

Decomposition allows us to ascribe physical mechanisms to processes (e.g. the
contribution of stationary waves). A few points to keep in mind:

11



2. Some mathematical machinery

• Decomposition into stationary and transient components is influenced by our
choice of τ , the averaging interval.

• We will also later use spectral decomposition (for decomposition over different
length scales) and EOF’s (for analysis of low-frequency variability)1

• The heat flux by mean symmetric motions
∫ ps

0
[v][T ]dp

g
can be in serious error

if
∫ ps

0
[v]dp

g
is inaccurate in the data source (the error would be O(1)). Peixoto

and Oort actually used the angular momentum budget to estimate [v] for their
analysis.

2.2 The Dynamical Equations

2.2.1 Coordinates

We will work primarily with pressure p as the vertical coordinate, but not always
(note σ = p/ps is used in some figures). As we are mostly interested in large-scale
circulations and budgets, we will use a spherical coordinate system (λ, φ) with λ the
longitude and φ the latitude.

We will use the so-called thin shell approximation: the radial coordinate r = z+R
where R is the Earth’s radius, and z � R for any atmospheric motion. We will often
make use of the hydrostatic approximation

∂p

∂z
' −ρg

which implies that the surface pressure is directly related to the mass of the air
column (per unit area):

ps = g

∫ ∞

0

ρdz

2.2.2 Continuity equation

The conservation of mass in a fluid is expressed per unit area as

dρ

dt
+ ρ∇ · c = 0

where c = (u, v, w) is the 3d velocity field, and the total derivative can be written (in
height coordinates)

d

dt
=

∂

∂t
+

u

R cosφ

∂

∂λ
+
v

R

∂

∂φ
+ w

∂

∂z

We can convert to pressure coordinates assuming hydrostatic balance. Consider
a mass element δm with dimensions δx, δy, δz:

δm = ρδxδyδz

1EOF = Empirical Orthogonal Function

12



2.2. The Dynamical Equations

The hydrostatic relation is

δp = −ρgδz

and thus the mass can be written

δm = −δxδyδp/g

Conservation of mass for the parcel can be expressed as d
dt
δm = 0. Therefore

0 =
1

δm

d

dt
δm

=
1

δx
δy
d

dt

(
δxδy

)
+

1

δp

d

dt

(
δp
)

from which we get the continuity equation is pressure coordinates:

∇ · v +
∂ω

∂p
= 0

where v = (u, v) is the horizontal velocity vector with u the eastward wind and v the
northward wind, and ω = dp

dt
is the vertical velocity in pressure coordinates.

2.2.3 Momentum equations (in p coordinates)

We will work with this form of the horizontal momentum equations:

du

dt
=

tanφ

R
uv + fv − g

R cosφ

∂z

∂λ
+ subgrid

dv

dt
= −tanφ

R
u2 − fu− g

R

∂z

∂φ
+ subgrid

Here we keep the metric terms, as we are considering motions over the planetary
scale. We have assumed hydrostatic balance in the vertical, allowing us to rewrite the
pressure gradient force in terms of geopotential height gradients on pressure surfaces.
We have also used the so-called “traditional approximations” (for example, neglecting
the du

dt
= −f ′ω term). The Coriolis parameter is defined as f = 2Ω sinφ where

Ω = 2π/day is the Earth’s rotation rate.
To understand the meaning of the metric terms, consider an air parcel moving with

v = 0, u > 0. The metric term proportional to −u2 induces a southward acceleration.
Thus the parcel would deviate from a latitude circle. The lines of motion are along
great circles instead. Note that these metric terms, like the Coriolis terms, conserve
kinetic energy, just redistributing momentum between the eastward and northward
directions.

Note that the total derivative in pressure coordinates is expressed as

d

dt
=

∂

∂t
+

u

R cosφ

∂

∂λ
+
v

R

∂

∂φ
+ ω

∂

∂p
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2. Some mathematical machinery

2.2.4 Thermodynamic equation

The first law of thermodynamics for air can be expressed as

cp
dT

dt
= Q+ αω

where Q is the diabatic heating rate from radiation, phase changes, etc., and the last
term could also be written vdp for a volume v.

We define the potential temperature θ as

θ = T
(p0

p

)κ

where κ = R
cp

. The first law then becomes

cp
T

θ

dθ

dt
= Q

from which it’s clear that in the absence of a diabatic forcing Q, θ is conserved
following an air parcel. On timescales of a few days, θ surfaces are therefore quasi-
Lagrangian, and we will sometimes use θ as a vertical coordinate.

2.2.5 Water vapor

The specific humidity q is defined as the mass of water vapor per unit total mass of
air. A conservation equation for q can be written

dq

dt
= s+D

where s is the source term due to phase changes of water (evaporation + sublimation
- condensation - deposition), and D accounts for sub-gridscale fluxes.

We will consider static stability, moist entropy, and the Clausius-Clapeyron rela-
tion as needed.

14



3 Observed mean state of the atmosphere

3.1 Mass

3.1.1 Geopotential height at 1000 hPa

By hydrostatic balance, height anomalies are related to sea-level pressure (SLP)
anomalies, δpsl ∼ 0.12δZ1000, with pressure in hPa and height in m. See Figs. 3.1
and 3.2.

• Subtropical high pressure cells (anticyclonic)

• Low pressure near the equator (ITCZ)

• NH and SH quite different, even in annual mean. (From ERA40 data, NH

Figure 3.1: Geopotential height at 1000 hPa, annual mean
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3. Observed mean state of the atmosphere

Figure 3.2: Geopotential height at 1000 hPa, NH winter (upper) and NH summer
(lower)
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3.1. Mass
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Figure 3.3: Seasonal cycle of sea-level pressure

mean ps = 983 hPa, SH mean ps = 988 hPa. Note that ps and SLP will differ
substantially wherever there is topography.)

• Subtropical highs move poleward in summer

• Low pressure regions at higher latitudes intensify in winter in NH, little change
in SH

• Large seasonality over Asia: summer low north of India, winter high over
Siberia.

• Very low pressure over belt around Antarctica

3.1.2 Zonal mean SLP

The geostrophic balance for near-surface zonal winds is

fug = − g
R

∂Z

∂φ

or, in height coordinates,

fug = − 1

ρR

∂p

∂φ

• Subtropical highs more intense and move equatorward during winter

• annular modes give rise to low-frequency variability in mass distribution

3.1.3 Seasonal cycle of mass

Refer to Fig. 3.3

• Trans-equatorial mass transport is implied
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3. Observed mean state of the atmosphere

• Total mass varies (water vapor)

The rate of change of mass in a polar cap is related to the mass transport across
the wall around a latitude circle, which we show by applying the divergence theorem
to the integrated continuity equation:

∫

V

∂ρ

∂t
dV = −

∫

V

div(ρc)dV

= −
∫

S

ρc · ndS

=

∫

wall

ρvdS

3.2 Thermal structure

3.2.1 Insolation: daily-mean and TOA

Refer to Fig. 2.6 of Hartmann (1994).

• Highest daily-mean insolation occurs at summer poles at solstice (24 hour day-
light)

• Radiation also destabilizes the atmosphere in the vertical (most heating near
the surface)

3.2.2 Surface air temperature

See Fig. 3.4.

• High topography and land masses are apparent

• Small gradients in tropics (reflects both insolation and dynamics)

• Strong gradients over land and water

• Ocean currents are important

• Strong seasonality in Siberia and northern Canada

• Zonal asymmetry decreases with height (not shown)

3.2.3 Latitude-σ plots of temperature

Recall that σ = p
ps

, thus always equals 1 at the surface regardless of topography. The
zonal average in σ coordinates takes into account the mass weighting dp = psdσ, thus

A
σ

=

∫
dφ
2π
psA∫

dφ
2π
ps

See Fig. ??.
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3.2. Thermal structure

Figure 3.4: Surface air temperature in January (upper) and July (lower).
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3. Observed mean state of the atmosphere
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Figure 3.5: Temperature in σ coordinates from ERA-40: annual mean (upper), NH
winter (middle), NH summer (lower)

20



3.2. Thermal structure

• The tropopause is indicated by σ-level of mean temperature lapse rate 2 K/km.

• Temperature decreases with height in troposphere, increases with height in
stratosphere

• Cold point above tropical tropopause

3.2.4 Potential temperature

Recall the definition
θ =

(p0

p

)κ

with κ = R/cp. Potential temperature is related to the entropy s by

s = cp ln θ + constant

Thus we often refer to surface of constant θ as isentropes.
See Fig. 3.6.

• NP and SP are similar (altitude, ‘jet’, continental vs. sea ice)

• Flat in tropics

• Isentropes from near-surface in the tropics to the tropopause near the poles.

3.2.5 Static stability

Consider a parcel of fluid with density ρ displaced from its resting position in the
vertical. The vertical momentum equation for the parcel is

dw

dt
= −g − 1

ρ

∂p

∂z

while the surrounding environment is assumed to be in hydrostatic balance, thus

0 = −g − 1

ρA

∂p

∂z

Therefore we can write, for the parcel

dw

dt
= −g − 1

ρ
gρA = g

ρA − ρ
ρ

= g
T − TA
TA

(using the ideal gas law to relate density to temperature).
If the parcel is displaced adiabatically, its temperature will change by compres-

sion/expansion at the dry adiabatic lapse rate γd = g/cp ' 10 K/km. We denote the
environmental lapse rate γ = −∂T/∂z. Then for small displacements we can write

T (z) = TA(z0)− γd(z − z0)

TA(z) = TA(z0)− γ(z − z0)

21



3. Observed mean state of the atmosphere
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Figure 3.6: Potential emperature in σ coordinates from ERA-40: annual mean (up-
per), NH winter (middle), NH summer (lower)
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3.2. Thermal structure
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Figure 3.7: Buoyancy frequency N from ERA-40, in units of 10−3 s−1.

and plugging these linearized expressions into the momentum equation above, we get

dw

dt
= g

z − z0

TA
(γ − γd)

This gives us a condition for the stability of the parcel displacements: if γ > γd then
a parcel displaced upwards will accelerate upwards. On the other hand, if γ < γd
(which is almost always the case in the atmosphere), then the upwardly displaced
parcel will accelerate downwards and oscillate about its initial position.

It can be shown that

−γ + γd =
TA
θ

∂θ

∂z

and thus
dw

dt
=
d2z

dt2
= −g

θ

∂θ

∂z
(z − z0)

This is a wave equation with a “buoyancy frequency” N , defined as

N2 =
g

θ

∂θ

∂z

The buoyancy frequency gives the timescale for gravity waves. As shown in Fig. 3.7,
N is remarkably uniform with respect to latitude in the atmosphere, despite the fact
that different processes at different latitudes contribute to the maintenance of the
stratification.

If N ' 10−2 s−1, then the typical period of oscillation is T = 2π/N ' 600 s ' 10
mins. N is low near the surface and high in the stratosphere.

An alternative view of static stability in terms of potential temperature: Note
that θ is conserved under dry adiabatic displacements, while in a stably stratified
environment ∂θA/∂z > 0. If a parcel at potential temperature θA is displaced up-
wards by δz, it remains at θA but encounters an environmental potential temperature
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3. Observed mean state of the atmosphere

θA + ∂θA
∂z
δz > θA. The parcel is thus denser than its environment and accelerates

downward.

3.2.6 Effects of moisture

Here we do a simple analysis that neglects effect on heat capacity, etc. For a more
rigorous account, see e.g. Emanuel (1994), chapter 4.

We can define an “equivalent potential temperature” θe which is conserved by
moist-adiabatic displacements. We also define the saturated equivalent potential tem-
perature θ∗e (the θe of a parcel with the same T, p but with q = qs). An approximate
derivation, neglecting variations of cp, L:

Tds = −Ldqs
s = cp ln θ + constant

(s is the dry entropy)

Tcp
dθ

θ
= −Ldqs

dθ

θ
= −Ldqs

cpT

ln θ = −Lqs
cpT

+ constant

θ = θ∗e exp
(
− Lqs
cpT

)

θ∗e = θ exp
(Lqs
cpT

)

θ∗e is conserved for saturated moist-adiabatic displacements. A quantity conserved
more generally is

θe = θ exp
( Lqs
cpTLCL

)

where TLCL is the temperature at the lifting condensation level (where the parcel
becomes saturated). θe is the potential temperature θ a parcel would have if it was
lifted to p → 0. In other words, θe is the temperature of a parcel after condensing
out all the water vapor and bringing it adiabatically to the 1000 hPa. θ∗e and θe are
plotted in Fig. 3.8.

3.2.7 Moist static stability

There are several different measures of the static stability of a moist air column. The
column is said to be conditionally unstable if ∂θ∗e/∂z < 0 (the instability is conditional
on the air parcels being saturated). If ∂θe/∂z < 0 then the column is potentially
unstable, meaning that if a layer of air is lifted to saturation, then ∂θ∗e/∂z < 0 and
the layer becomes unstable.

Slantwise moist convective instability looks at θ∗e along angular momentum sur-
faces.
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3.2. Thermal structure
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Figure 3.8: Saturated equivalent potential temperature θ∗e (upper) and equivalent
potential temperature θe (lower).

3.2.8 Meridional temperature gradient

A few points about ∂T/∂y:

• Strongest in winter and can reverse in stratosphere

• Indicative of APE (available potential energy), baroclinicity

• Can use to identify storm tracks?

The Eady growth rate for baroclinic instability is

σE ∼
∂θ/∂y

N

and as we saw previously, N is roughly constant with latitude.
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3. Observed mean state of the atmosphere

3.2.9 Temperature variability

• ∼ 5 K

• Upper troposphere variability partly from movement of the tropopause

• Small in tropics

• Seasonality is included in annual statistics (especially at high latitudes)

• Stationary eddies, land-ocean contrast

3.2.10 Theories for the thermal structure

It is an outstanding challenge to develop a theory for the thermal structure of the ex-
tratropical troposphere. One of the challenges is that the stratification is maintained
by both moist convection and eddies, and their contributions vary with latitude.

A few notable papers:

Stone (1978) Baroclinic adjustment. E.g. Zhou and Stone (1993): isentropic
slope roughly twice the neutral slope in a 2-level model where static stability can
adjust. (Note that the mean state of the atmosphere is baroclinically unstable
in general).

Juckes (2000) Moist convection and eddies. The vertical stratification is moist
neutral + occasionally stable contribution from eddy advection of temperature
and moisture.

∆zθe ∼ ∂yT 500hPa

Schneider (2006) Eddy diffusion of PV

Sc =
f

β

∂yθs
2∂p(ps − pt)

' 1

(the isentropic slope is ∂p/∂y|θ = ∂yθ/∂pθ).

Schneider and OGorman (2008) Dry theories and Juckes theory inadequate in
aquaplanet simulations. All these theories are related to observations of the
mean isentrope from near-surface in the tropics to the tropopause in polar
regions.

θt − θs ∼ |∂yθ
f

β
| ∼ |∂yθa tanφ| ∼ θeq − θpole

3.3 Mean state of the circulation

• Vertical: close to hydrostatic, relatively small velocities and accelerations

• Horizontal: Coriolis and pressure gradient balance
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3.3. Mean state of the circulation

3.3.1 Surface winds and geopotential height

See P&O figure 7.1

• Winds and height contours almost parallel

• But some ageostrophic flow into lows and out of subtropical highs (Ekman
balance with friction, smaller-scale turbulent fluxes).

3.3.2 Upper-level flow

See P&O figure 7.13

• Parallel to height contours (geostrophic)

• Long planetary waves superimposed on zonal flow

• More zonal in SH

• Seasonal: summer-NH jet stream move north and closed circulation over Asia

• Standing waves: wavenumber 2, strongest in NH winter (depends on surface
forcing)

3.3.3 200 hPa u (CDC)

See Fig. 3.9.

• Strong jet streams, split in SH, superrotation of global average winds

• NH jet maxima over Eastern North America and Asia (and adjacent oceans)

• Tropical easterlies (westerly duct)

• Seasonal:

– shifts equatorward in winter

– winter jets stronger

3.3.4 Latitude-σ u (era40)

See Fig. 3.10

• Similar maximum in NH and SH in annual mean, although generally stronger
in SH.

• Weak easterlies in tropics

• Surface easterlies and westerlies cover similar area (come back to this later)

• Max. in [u] above max. in [∂T/∂y] (cf. earlier figure)
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3. Observed mean state of the atmosphere

Figure 3.9: Zonal wind at 200 hPa, annual mean (upper), NH winter (middle) and
NH summer (lower).
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3.3. Mean state of the circulation
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Figure 3.10: Zonal wind in σ coordinates from ERA-40: annual mean (upper), NH
winter (middle), NH summer (lower)
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3. Observed mean state of the atmosphere
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Figure 3.11: Meridional wind in σ coordinates from ERA-40: NH winter

3.3.5 Zonal wind shear ∂u/∂z

Derive the thermal wind relation:

fug = − g
R

∂Z

∂φ

∣∣∣
p

f
∂ug
∂p

= − g
R

∂

∂φ

∣∣∣
p

∂Z

∂p

=
g

R

∂

∂φ

∣∣∣
p

1

ρg

=
1

R

∂

∂φ

∣∣∣
p

RgT

p
∂ug
∂p

=
Rg

fRp

∂T

∂φ

∣∣∣
p

The flow is barotropic if ∂u/∂z = ∂yT |p = 0. But generally T varies on p surfaces
so the flow is baroclinic. (c.f. equivalent barotropic v ∝ ∂v/∂z)

So upper level and surface zonal winds differ by an amount that depends on the
meridional temperature gradients.

3.3.6 Mean meridional flow [v] (era40)

See Fig. 3.11

• Small values relative to [u]

• Note [vg] = 0 (there is no zonal-mean zonal pressure gradient).

• Since fv appears as an force in the zonal momentum equation, [v] is important
in Eulerian momentum balance (e.g. at the surface).

30



3.3. Mean state of the circulation
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Figure 3.12: Vertical motion in σ coordinates, NH winter.

3.3.7 Vertical motion is σ coords, [dσ/dt] (era40)

See Fig. 3.12

• Strongest at mid-troposphere

• Annual mean ascent centered near 5◦N (mean ITCZ).

• Values: 2× 10−4 hPa s−1 ∼ 3 mm s−1

• Cross cells for solstices

• ω strongly related to precip (or absence of it).

• Better visualization from mean meridional (Stokes) streamfunction

3.3.8 Definition of mean meridional streamfunction ψ

Continuity equation for the mean flow:

1

R cosφ

∂

∂φ
cosφ[v] +

∂[ω]

∂p
= 0

Since the mean flow is divergence-less in the p− φ plane, we can introduce a stream-
function ψ defined by:

[v] =
g

2πR cosφ

∂ψ

∂p

[ω] = − g

2πR2

∂ψ

∂φ
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3. Observed mean state of the atmosphere

To calculate ψ, set ψ = 0 at the top boundary. Then integrate the first expression
above to get

ψ =

∫ p

0

dp
2πR cosφ

g
[v] =

∫ p

0

dp

g

∫ 2π

0

dλR cosφv

In other words, ψ is the mass transported northwards above pressure level p per unit
time. The units of ψ are kg s−1. In oceanic context, such transports are usually
expressed in volumetric terms using the Sverdrup, where 1 Sv = 106 m3 s−1. Since
the density of water is roughly 103 kg m−3, the equivalent “mass Sverdrup” is 109

kg s−1. These units are sometimes applied to atmospheric transports in order to
explicitly compare and contrast with oceanic mass transport.

For long-time averages we should expect ψ = 0 at the lower boundary as well.
We can use this as a check of accuracy (similarly for polar boundaries, although the
factor of cosφ ensures this).

Close vertical spacing of ψ contours implies large [v]. Close horizontal spacing
implies large [ω].

3.3.9 Mean meridional streamfunction ψ from era40 data

See Fig. 3.13.

• Annual mean ascent north of equator (c.f. land masses and Asian monsoon)

• Strong seasonal cycle so that annual mean is not very representative

• Hadley, Ferrel, Polar cells

• Winter Hadley cell dominates at solstice

• Indirect Ferrel cells occur at latitudes where eddies are important, suggesting
that ψ is an incomplete description of the flow

• Hadley cell important for dry and moist climate zones, e.g. desert regions,
ITCZ, etc. (see later)

• If eddies unimportant for Hadley cell then streamfunction contours would co-
incide with angular momentum contours – this is not the case generally.

See Schneider figure.
Angular momentum per unit mass about the Earth’s axis can be written

[M ] =
(
ΩR cosφ+ [u]

)
R cosφ

M is conserved by symmetric circulations.
Different cells occur on other planets, e.g Venus has a slow rotation rate (253

day period), and its Hadley cell extends to 60◦. Large planets like Jupiter also have
different cells.

Note also that the mean circulation looks different if a different vertical coor-
dinate is used. As an example, take potential temperature θ. For approximately
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3.3. Mean state of the circulation
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Figure 3.13: Mean meridional streamfunction ψ from ERA-40: annual mean (upper),
NH winter (middle), NH summer (lower)
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3. Observed mean state of the atmosphere

adiabatic motions, dθ/dt ' 0, so θ is a quasi-Lagrangian coordinate. We can write
the dynamical equations in this coordinate system.

Mass conservation in θ coordinates looks like (see Schneider, 2004):

∂

∂t
ρθ +∇h ·

(
ρθv
)

+
∂

∂θ

(
ρθQ

)
= 0

where

v =
(
u, v
)

u =
dx

dt
v =

dy

dt

∇h =
( ∂
∂x

∣∣
θ
,
∂

∂y

∣∣
θ

)

Q =
Dθ

dt

and ρθ is the equivalent of density in θ coordinates in units of kg m−2 K−1, with

ρθ = −1

g

∂p

∂θ

(note ρθdxdydθ = ρdxdydz = −g−1dxdydp, these are all equivalent expressions for a
mass element in the fluid).

The mass transport in θ coordinates is the same as the entropy transport. We can
define the tropopause as the level to which entropy is redistributed by the circulation.

Averaging the above we find

∂

∂y

(
[ρθ]v

θ
)

+
∂

∂θ

(
[ρθ]Q

θ
)

= 0

where we use a density-weighted average

(·)
θ

=
[(ρθ·)]
[ρθ]

We can then define a streamfunction (just as before):

ρθv
θ =

g

2πR cosφ

∂ψ

∂θ

ρθQ
θ

= − g

2πR2

∂ψ

∂φ

so that ψ retains the same mass transport units of kg s−1.
Alternatively, one can estimate from p-coordinates as

ψ
(
θ0, φ

)
=

1

τ

∫ τ

0

dt

∫ 2π

0

dλ

∫ ps

0

dp

g
vR cosφH

(
θ0 − θ

)

where we have written the Heaviside function:

H(x) =

{
0 x < 0
1 x ≥ 0

(c.f. Pauluis et al., 2008)
Can do the same for equivalent potential temperature θe.
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3.3. Mean state of the circulation

3.3.10 Mean meridional streamfunction ψ from era40 data

See Fig. 3.14.

• Takes into account latent heat release

• No indirect cells in isentropic coordinate circulations

• θe coordinate gives the overturning circulation with the simplest structure (if
we used moist static energy as the vertical coordinate then this would be a
description of the energy transport).

• θ circulation: can see latent heating in storm tracks.

• mass circulation in θ or θe coordinates related to entropy transport

• θ coordinate circulation related to residual circulation in Transformed Eulerian
Mean.

• Return flow is predominantly in the surface layer, i.e. eddy fluctuations such as
cold air outbreaks. (The surface layer is defined as the range of θ or θe where
the surface θ or θe is mostly in).

• Can define the troposphere as a boundary layer in which the bulk of entropy is
redistributed by the circulation.

3.3.11 Variability of the circulation

Decompose the circulation and its variance:

u = [u] + u∗ + u′

v = [u] + v∗ + v′

[u2] = [u]2 + [u∗2] + [u′2]

[v2] = [v]2 + [v∗2] + [v′2]

Decompose the kinetic energy (per unit mass) as

K = KTE +KSE +KM

with each term defined as follows:

K =
1

2

[
u2 + v2

]

KTE =
1

2

[
u′2
]

KSE =
1

2

[
u∗

2
+ v∗

2]

KM =
1

2

([
u2
]

+
[
v2
])
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3. Observed mean state of the atmosphere
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Figure 3.14: Meridional overturning streamfunction in dry isentropic coordinates from
ERA-40: annual mean (upper), NH winter (middle), NH summer (lower).
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3.3. Mean state of the circulation

3.3.12 Observed variability of the circulation

Refer to figures in Peixoto and Oort (1992):

Fig. 7.20

Vertical and zonal mean of standard deviations of components of u and v

• Fairly symmetric between hemispheres

• Temporal standard deviations same order of magnitude as [u], much bigger than
[v]

•
√
u′2 and

√
v′2 of comparable size and distribution

• Implies an equipartion of energy, u′2/2 ∼ v′2/2, which suggests a turbulent flow.

• Winter standard deviations larger. Stronger eddies from stronger pole-to-equator
temperature gradients

• Annual curves include variance from seasonal cycle

• Greater seasonal cycle in NH is evident.

Fig. 7.21

• (a) shows storm tracks, while (b) shows total KE which includes subtropical
and midlatitude mean jet streams

• Peaks east of North America and Japan, more zonal in SH (like precipitation
features)

Fig. 7.22

The vertical – meridional cross-section of wind variability

• Maxima near 200 hPa (related to eddy temperature gradients)

• KE and KM are the main contributions

• The broadness of KTE due to

– seasonal variation

– variations with longitude (in N.H.)

– day-to-day variability
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3. Observed mean state of the atmosphere

Fig. 7.23

Kinetic energy vs. latitude

• Similar to 7.20

• Summer to winter in N.H.: factor of 3 difference

• Summer to winter in S.H.: much smaller changes

3.3.13 Spectral decomposition

Work with horizontal length scales and global spectral decomposition
For 2D cartesian flow:

1

2
v · v =

∫
E(k)dk

where E(k) is the kinetic energy spectrum, k =
√
k2
x + k2

y, kx = 2π
λx

and ky = 2π
λy

.

E(k) has units m3 s−2.
For a frictionless, unforced flow, both energy and enstrophy (mean squared vor-

ticity) are conserved over the domain.

1

2
ξ2 =

∫
G(k)dk

=

∫
k2E(k)dk

If the flow is non-divergent then we can express it in terms of a streamfunction

v = k ×∇ψ

and

E(k) = πk3|ψ(k)|2

On the sphere, use spherical harmonics to decompose the horizontal streamfunc-
tion ψ of the non-divergent part of the flow (see Boer, 1982):

ψ(λ, φ) =
N∑

n=0

n∑

m=−n

ψn,m exp(imλ)Pm
n (sinφ)

where n is the total wavenumber, m is the zonal wavenumber, and Pm
n is the associated

Legendre polynomial of order n. For example, (see figure)

Pm
n P 0

0 = 1 P 0
1 = x P 1

1 = −
√

(1− x2)
Re
(

exp(imλ)Pm
n (sinφ)

)
1 sinφ − cosφ cosλ
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3.3. Mean state of the circulation

Take the global mean kinetic energy

<
1

2
v · v > =< ∇ · (ψ∇ψ)− ψ∇2ψ >

=
N∑

n=0

En

=
1

4

N∑

n=0

n∑

m=−n

n(n+ 1)

a2
|ψn,m|2

(note that n(n+ 1)/a2 are the eigenvalues of ∇2 - use for length scales).

3.3.14 The energy spectrum in spherical coordinates

En has units m2 s−1 (n is dimensionless).
To convert length scales to total wavenumbers consider that the eigenvalue of ∇2

is n(n+ 1)/a2, which is independent of zonal wavenumber m. That is,

∇2 exp(imλ)Pm
n (sinφ) = −n(n+ 1)

a2
exp(imλ)Pm

n (sinφ)

So the length scale is

1

L2
∼ n(n+ 1)

a2

L ∼ a√
n(n+ 1)

Note that for a sine wave we would say L = 2πa/
√
n(n+ 1), so in this case L is the

wavelength.
See Fig. 3.15

• The energy spectrum En includes contributions from all m for a given n (and
thus all ‘effective’ meridional wavenumbers l = n−m).

• If the field is isotropic then ψn,m = ψn

• Water vapor movie shows turbulent flow

• Figure shows En on log-log scale from ERA40

• Peak at n ' 7

– L = a√
n(n+1)

∼ 850 km, but often include O(1) factors e.g. 2π

• If exclude m = 0 get spectrum of eddy kinetic energy. If include m = 0 then
get large contribution for small wavenumbers from the zonal jets (large-scale
features). Alternate approach is to time-filter the fields to pick out 2-8 day
contribution.
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3. Observed mean state of the atmosphere
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Figure 3.15: Spectra for total EKE (upper) and potential temperature (lower) (both
annual mean). n−3 shown for comparison.

• See discussion of 2D turbulence in keynote

• Spectrum is roughly n−3 from n ' 8 to n ' 50.

– same as enstrophy cascade, but will see later that no inertial range occurs

• Figure: potential temperature also close to n−3 as would be predicted for avail-
able potential energy (Charney, 1971)

• Can also define 1D spectra, e.g. E(m) at a given latitude.

• Figure: aircraft data (flown near tropopause) suggest spectrum change to shal-
lower slope at smaller scales. (This figure is for a 1D spectrum but not at one
latitude).
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3.4. Water vapor and the hydrological cycle

3.4 Water vapor and the hydrological cycle

Highly variable in space and time.

3.4.1 Fig. 3.16: GPCP (Global Precipitation Climatology Project) mean
precipitation rate vs. latitude and longitude in mm/day

• High precipitation in equatorial zone in ITCZ (note SPCZ in the Pacific)

• Seasonal maps show major differences over Monsoon regions (essentially, wher-
ever there is a subtropical land mass) e.g. the Asian monsoon.

• Major dry regions where subsidence occurs (subtropical highs)

• Secondary maxima in midlatitude storm tracks

3.4.2 Fig. 3.17: time and zonal mean specific humidity (ERA40)

• Most water vapor near surface and in the tropics

• Saturation specific humidity qs ≥ q, largely determines structure of specific
humidity, determined by T, p.

3.4.3 Fig. 3.18: time and zonal mean relative humidity

• Subtropical minima at ∼ 500 hPa or higher.

• Even in zonal and time mean, values as low as 30%

• Close to 80% near surface

• Seasonal migration of dry zones is evident

• Observations and reanalysis may be unreliable, e.g. numerical model used in
ERA40 has a critical value of 80% built-in for development of stratiform clouds
in the free troposphere.
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3. Observed mean state of the atmosphere

Figure 3.16: GPCP mean precipitation rate in mm/day: annual (upper), NH winter
(middle) and NH summer (lower).42



3.4. Water vapor and the hydrological cycle
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Figure 3.17: Time and zonal mean specific humidity (upper) and saturated specific
humidity (lower).
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3. Observed mean state of the atmosphere
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Figure 3.18: Zonal mean relative humidity: Annual mean (upper), NH winter (mid-
dle) and NH summer (lower).

44



4 Energetics

The goal of this section is to characterize the energy balance of the atmosphere and
how energy is transported. Refer to the numbered figures in Peixoto and Oort (1992)
unless otherwise stated.

4.1 Forms of energy

Internal I = cvT (with cv the specific heat capacity at constant volume)

Potential Φ = gZ

Kinetic K = 1
2

(
u2 + v2 + w2) = 1

2
c · c

Latent LH = Lq

Note the latent heat of evaporation is L = 2501 J/g while the latent heat of
sublimation is L = 2835 J/g, but we will neglect ice.

The total energy is thus E = I + Φ + LH +K.

4.1.1 Total potential energy

The hydrostatic approximation means that internal and potential energy are related.
The internal energy per unit area is

∫ ∞

0

ρIdz =

∫ ∞

0

ρcvTdz =

∫ p0

0

cvT
dp

g

while the potential energy per unit area is
∫ ∞

0

ρΦdz =

∫ ∞

0

ρgzdz =

∫ p0

0

zdp =

∫ ∞

0

pdz +
[
pz
]p0

0
=

∫ ∞

0

pdz

=

∫ ∞

0

ρRgTdz =
Rg

cp

∫ p0

0

cvT
dp

g
=
Rg

cv

∫ ∞

0

ρIdz

So define the total potential energy (= grav. potential energy plus internal energy)
∫ ∞

0

ρ
(
Φ + I

)
dz =

∫ ∞

0

ρcpTdz =

∫ p0

0

cpT
dp

g

using cp = cv +Rg = cv
(
1 + Rg

cv

)
.
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4. Energetics

4.1.2 Speed of sound

The speed of sound is cs where

c2
s =

(∂p
∂ρ

)
θ

=
cp
cv
RgT

Derivation:

θ = T
(p0

p

)κ
→ p = p0

(T
θ

) 1
κ

=
p0

θ
1
κ

( p

ρRg

) 1
κ

p1− 1
κ = p

κ−1
κ =

p0

θ
1
κ

ρ−
1
κR
− 1
κ

g

p =

[
p
κ−1
κ

0

(θRg)
1

κ−1

]
ρ−

1
κ−1

(∂p
∂ρ

)
θ

= −
[

p
κ−1
κ

0

(θRg)
1

κ−1

]
1

κ− 1
ρ−

1
κ−1
−1 = − p

κ− 1
ρ−1 = − RgT

κ− 1

But κ = Rg/cp by definition, so

κ− 1 =
Rg

cp
− 1 =

Rg − cp
cp

= −cv
cp

whence (∂p
∂ρ

)
θ

=
cp
cv
RgT

4.1.3 Magnitude of kinetic energy

The kinetic energy per unit area is

∫ p0

0

K
dp

g
=

1

2g

∫ p0

0

|c|2dp

while the total potential energy is

∫ p0

0

cpT
dp

g
=

∫ p0

0

c2
s

( cv
Rg

)dp
g

→ K

Φ + I
∼ 1

2

|c|2

c2
s

cv
Rg

If c ∼ 15 m/s and cs ∼ 300 m/s, then

K

Φ + I
∼ 1

2

152

3002

5

2
∼ 0.003

So the kinetic energy is a small fraction of the total energy (but see later for
available energy).
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4.2. Lagrangian rates of change of energy for air parcels

4.1.4 Fig 13.3: Meridional profiles of energy components

Note these are zonal, time and vertically averaged values. Kinetic energy is not
plotted because the values are negligible.

Total 2.6×105 J/kg

Internal 1.8×105 J/kg, or 70% of total

Potential 0.7×105 J/kg, or 27% of total

Latent 0.1×105 J/kg, or 2.5% of total

Kinetic 180 J/kg, or 0.05% of total

(data from Oort and Peixoto, 1983)

• Latent energy has strong seasonal cycle at low latitudes (unlike I and Φ).

• Maximum at S.P. due to topography

• High latitude S.H. less energy than N.H. (colder) (but potential temperature
similar!)

• Bigger seasonal cycle in N.H. (as usual).

4.2 Lagrangian rates of change of energy for air parcels

We will work in z coordinates for the moment.

4.2.1 Potential
dΦ

dt
= gw

4.2.2 Internal
dI

dt
= Q− pα∇ · c

This follows from the 1st law and continuity:

cvdT = Q− pdα

−1

ρ

dρ

dt
= ∇ · c

ρ =
1

α
→ −α d

dt

1

α
= ∇ · c

1

α

dα

dt
= ∇ · c
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4. Energetics

dα

dt
= α∇ · c

The diabatic heating can be decomposed into radiative, latent and frictional heat-
ing:

Q = Qh +Qf

Qh = −α∇ · F rad − L(e− c)− α∇ · JDH
where F rad is the radiative flux, e is evaporation per unit mass, and JDH is the diffusive
heat flux.

The frictional contribution can be written

Qf = −ατ : ∇× c

where τ is the frictional stress tensor (e.g. ρc′iu
′
i, subgrid momentum contribu-

tion). The component τzy is the stress (force per unit area) in the y direction on
the z=constant plane.

The tensor inner product is

τ : ∇ · c = τijδicj

So the total Lagrangian rate of change of internal energy is

dI

dt
= −α∇ · F rad − L(e− c)− α∇ · JDH − ατ : ∇c− pα∇ · c

4.2.3 Kinetic energy

For kinetic energy we use the vector momentum equation

dc

dt
= −2Ω× c− α∇p+ g + F

Dot with c:

c · dc
dt

= c ·
(
− 2Ω× c

)
− αc · ∇p+ g · c+ F · c

d

dt

1

2
|c|2 = −αc · ∇p− gw − αc · ∇ · τ

or
dK

dt
= −gw − α∇ ·

(
cp+ τ · c

)
+ αp∇ · c+ ατ : ∇c

For the hydrostatic case

−gw − αc · ∇p = −αv · ∇p

4.2.4 Latent heat

L
dq

dt
= L(e− c)− αL∇ · Jq

where the last term represents subgrid and molecular diffusion processes.
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4.2. Lagrangian rates of change of energy for air parcels

4.2.5 Conversion between different forms

In the above Lagrangian rates of changes we can see several terms in common which
balance each other and represent conversion between different forms of energy. These
include

• ατ : ∇c (frictional dissipation) in dI
dt

and dK
dt

• gw (work done against gravity) in dΦ
dt

and dK
dt

• −pα∇ · c (work done against pressure field, i.e. compression) in dI
dt

and dK
dt

• L(e− c) (latent heating) in dq
dt

and dI
dt

(really conversion between different forms
of internal energy)

Some things to note: conversions from KE involve forces: pressure, gravity, friction
(but not e.g. Coriolis). Pressure and gravity give rise to reversible conversions, while
frictional dissipation is irreversible (comes up as Tds).

See Fig. 13.1 in Peixoto and Oort.

4.2.6 Total energy

When multiplied by ρ and integrated in space, terms of the form

α∇ · (flux)

result in ∫
(ρα)∇ · (flux)dV =

∫
∇ · (flux)dV =

∫

S

(flux) · ndS

and are thus interpreted as boundary forcing, e.g. sensible heat flux, work done on
ocean, surface evaporation.

Can add different equations to get an equation for E, the total energy of the
atmosphere.

dE

dt
= −α∇ · (pc)− αc · ∇τ + L(e− c) +Q− αL∇ · JDq

(gw and pα(∇ · c) cancelled)
Or using

Q = −α∇ · F rad − L(e− c)− α∇ · JDH − ατ : ∇× c

we can write
dE

dt
= −α∇ ·

(
F rad + pc+ JDH + LJDq + τ · c

)
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4. Energetics

4.3 Observed heating rates

4.3.1 Radiation

We make a distinction between the solar shortwave fluxes, centered on 0.6 µm, and
terrestrial longwave fluxes roughly centered on 15 µm. The net radiative flux at the
top of the atmosphere is

FTOA =

∫

top

(1− α)F ↓SWds−
∫

top

F ↑LWds ' 0

where α is the albedo, where (1−α) is defined as the fraction of radiation not scattered
or reflected back to space.

Figure: daily averaged insolation

• stronger in DJF than JJA by about 7% (perihelion, or closest approach to the
sun, occurs in January).

• Max. at summer pole (due to increasing length of day as one moves towards
the summer pole.

• Weaker meridional gradient in summer – as move poleward the longer day offsets
change in zenith angle (how high the sun is) in the summer hemisphere, but
the shorter day and lower sun combine in the winter hemisphere.

Albedo is variable and depends on the solar zenith angle (higher albedo as Z
increases).

• Clouds account for roughly half (about 50% cloud cover)

• Cumulus have high albedos, stratus have large area

• Albedo is generally highest over land and in polar regions (Stephen’s figure)

• Hemispheric albedos show little seasonal cycle (see table).

• ∼ 30% of F ↓SW (1− α) is absorbed in the atmosphere.

• comment on polar night: ice albedo irrelevant at time of year when ‘polar
amplification’ occurs (ocean plays a role).

Absorbed solar radiation (Trenberth and Stepaniak figure)

• Most absorbed near equator away from deep convection (cooling effect of clouds
in SW).

• OLR is largest in tropics away from deep convection (warming effect of clouds
in LW). Note that max. OLR in zonal average is in the subtropics.

• Net radiation shows compensation for high clouds and implies energy transport
polewards by the circulation.
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4.4. Energy budgets in Eulerian reference frame

4.3.2 Diabatic heating

Fig. 13.2: Diabatic heating vs. latitude

• Radiative heating is negative and of order −0.5 to 2 K/day, but some warming
in tropical stratosphere due to SW absorption (ozone).

• Latent heating is positive, maxima in ITCZ and storm tracks.

– distribution in figure is very approximate!

– values of O(2 K/day)

• ’boundary layer heating’ results from turbulent fluxes of temperature (e.g. ther-
mals). Mostly positive

• Net diabatic heating is both positive and negative

– largely depends on whether close to latent heating maxima

4.4 Energy budgets in Eulerian reference frame

So far we have considered Lagrangian rates of change. Now move to Eulerian frame-
work so as to consider transport across fixed boundaries. Also switch to pressure
coordinates (λ, φ, p, t) – this avoids density factors after using hydrostatic approxi-
mation.

4.4.1 Sensible heat

The first law says

cp
dT

dt
= Q+ α

dp

dt
or, in Eulerian notation

cp

(∂T
∂t

+
u

R cosφ

∂T

∂λ
+
v

R

∂T

∂φ
+ ω

∂T

∂p

)
= Q+ αω

but, invoking the continuity equation

1

R cosφ

∂u

∂λ
+

1

R cosφ

∂

∂φ
(v cosφ) +

∂ω

∂p
= 0

we can write

cp

(∂T
∂t

+
1

R cosφ

∂

∂λ

(
uT
)

+
1

R cosφ

∂

∂φ

(
vT cosφ

)
+ ω

∂T

∂p

)
= Q+ αω

Now take the time average:

∂

∂t

(
cpT
)

= − 1

R cosφ

( ∂
∂λ
FHλ +

∂

∂φ

(
FHφ cosφ

))
− ∂

∂p
FHp +Q+ αω

where we have defined the enthalpy flux FH =
(
cpTu, cpTv, cpTω

)
.
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4. Energetics

4.4.2 Latent heat

L
dq

dt
= L(e− c)− Lg ∂

∂p
JDq

(neglecting horizontal diffusion)
Following the same procedure as for the sensible heat above, we get

∂

∂t
Lq = − L

R cosφ

( ∂
∂λ
Fqλ +

∂

∂φ

(
Fqφ cosφ

))
− L ∂

∂p

(
Fqp
)

+ L(e− c)− Lg ∂
∂p
JDq

where we have defined the moisture flux as Fq =
(
qu, qv, qω

)
.

4.4.3 Kinetic energy

The kinetic energy flux is more subtle; we must exclude ω2 to get conservation.

u×
(du
dt

=
tanφ

R
uv + fv − g

R cosφ

∂Z

∂λ
+ Fλ

)

v ×
(dv
dt

=
tanφ

R
u2 − fu− g

R

∂Z

∂φ
+ Fφ

)

∂

∂t

1

2

(
u2 + v2

)
= − 1

R cosφ

( ∂
∂λ
FKλ +

∂

∂φ
FKφ cosφ

)
− ∂

∂p
FKp + uFλ + vFφ − αω

where the flux is defined as

FK =
(1

2
(u2 + v2)u+ gZu,

1

2
(u2 + v2)v + gZv,

1

2
(u2 + v2)ω + gZω

)

Note cancellation of metric terms, and cancellation of Coriolis terms, and that we
have rewritten the pressure work term to give a flux of potential energy:

− gu

R cosφ

∂Z

∂λ
− gv

R

∂Z

∂φ
=− g

( 1

R cosφ

∂

∂λ
uZ +

1

R cosφ

∂

∂φ
vZ cosφ+

∂

∂p
ωZ
)

+ gω
∂Z

∂p
+ gZ

( 1

R cosφ

∂u

∂λ
+

1

R cosφ

∂

∂φ
v cosφ+

∂ω

∂p

)

The term in the second parentheses is zero by continuity, and

g
∂Z

∂p
=
αg

g
= α

4.4.4 Total energy

Adding the sensible, latent and mechanical energy equations gives

∂E

∂t
=− 1

R cosφ

( ∂
∂λ

(
FEλ

)
+

∂

∂φ

(
FEφ cosφ

))
− ∂

∂p
FEp

− g ∂
∂p

(
F rad + FDH p + FDq p

+ τ · c
)
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4.4. Energy budgets in Eulerian reference frame

where the total energy flux is

FE =
([
cpT + gZ + Lq +

1

2

(
u2 + v2

)]
u,

[
cpT + gZ + Lq +

1

2

(
u2 + v2

)]
v,

[
cpT + gZ + Lq +

1

2

(
u2 + v2

)]
ω
)

4.4.5 Connection to moist static energy

Extra term in energy flux compared with energy (g Z) arises from pressure work.
In tropical meteorology, traditionally use the so-called ‘moist static energy bud-

get’, defined as h = cpT + gZ + Lq. This is a source of confusion in the literature
(see Trenberth and Neelin for discussions of the confusion).

h would be conserved for displacements where pressure changes are purely hydro-
static. This is not the case when there are pressure gradients in the horizontal (even
when usual hydrostatic approximation is appropriate).

In the case when ∂
∂t

= 0, the approximation amounts to the neglect of (u2 + v2)
in the flux.

4.4.6 Average budgets

Often take the zonal average also, e.g.

∂

∂t

[
cpT
]

= − 1

R cosφ

∂

∂φ

([
FHφ

]
cosφ

)
− ∂

∂p

([
FHp

])
+
[
Q
]

+
[
αω
]

[
FHφ

]
= cp

[
T
]

+ cp
[
T
∗
v∗
]

+ cp
[
T ′v′

]

and so on.
(Note the conversion from potential to kinetic energy is now in the term αω).
Integrating over a polar cap

∂

∂t

∫

M

cpTdm =

∫

M

Qdm+

∫

M

αωdm−
∫

∂M

FH · nds

where the polar cap integral is
∫

M

dm =

∫ p0

0

dp

g

∫ 2π

0

dλR cosφ

∫ π/2

φ0

dφR

Since there are no fluxes at TOA and surface contributing to the boundary term,
we get

∂

∂t

∫

M

cpTdm =

∫

M

(
Q+ αω

)
dm+ 2πR cosφ

∫ p0

0

[
FHφ

]dp
g

For global integral

∂

∂t

∫

M

Edm =

∫

top

F
↓
radds+

∫

sfc

(
− F ↓rad + F

↑
SH + F

↑
LH

)
ds
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4. Energetics

The total conversion from potential to kinetic energy is

C
(
P,K

)
= −

∫

M

αωdm

which is positive for upward motion ω < 0.
Note also that ∂ω

∂p
= −∇h · (u, v), so that ω and C(P,K) is associated with

divergent circulations.
(Recall that the geostrophic wind is non-divergent and thus doesn’t contribute to

this conversion. In other words, it doesn’t do work against the pressure gradient.)
We get generation of K.E. when αω < 0... this implies upward motion (ω < 0)

when α is large (low density), and vice-versa.
For global integrals

∂

∂t
P = −C

(
P,K

)
+H

∂

∂t
K = C

(
P,K

)
−DA −Doc

where

H =

∫

M

Qdm

DA = −
∫

M

(
ατ · ∇c

)
dm

is the dissipation rate in the atmosphere, and

Doc = −
∫

sfc

(
ωZ − τ o · c

)

is the ocean forcing.
For the long term average

H = DA +Doc > 0

because the dissipation is positive.

4.5 Fluxes of energy poleward

The total poleward energy flux is given by
(
cpT + gZ + Lq +

1

2

(
u2 + v2

))
v

4.5.1 Fig. 13.4: Transient sensible heat

Mostly associated with extratropical storm tracks

v′T ′ ∼ −D∂yTs
and both D and ∂yTs are stronger in winter.

Also expect to be poleward if diffused, but this is not always the case in the
subtropical upper troposphere (θ not conserved).

54



4.5. Fluxes of energy poleward

4.5.2 Fig. 13.5: Components of sensible heat flux vs. lat-σ

• Transient flux maximizes near 800 hPa in current climate, but second maximum
near tropopause.

• Equatorward transient flux between -25◦ and 25◦ as mentioned earlier

• Stationary flux extends through troposphere in N.H.

• Mean meridional component → strong near surface and tropopause

4.5.3 Fig. 12.11: Latent heat flux

Focussed near surface where temperatures are higher.

4.5.4 Fig. 12.12

Transients extend into tropics

4.5.5 Fig. 13.6: Northward sensible flux vs. latitude

• Stationary flux is very strong in N.H. winter, exceeds transients

• v∗2 ∼ 0.5v′2

• Strong seasonal cycle in mean meridional flux component in tropics

4.5.6 Fig. 13.7: Potential energy flux

•
[
v′Z ′

]
is very small compared with contribution from

[
v′T ′

]
→ no geostrophic

component.

• Large compensation in mean component with mean sensible component.

– For dry adiabatic motions we expect gdz ' −cpdT

In tropics, fluxes of gZ, cpT and Lq all nearly cancel (as we will see later). Stability
arguments suggest that θe is constrained. But cpTd(log θe) ' d(cpT + Lq + gZ) (see
homework). This is usually phrased as gross moist stability. It is nearly zero, but in
fact it can have different signs depending on the circulation.

4.5.7 Fig. 13.8, 13.9: Transport of kinetic energy

• Mostly at the jet stream level

• Transient eddies dominate except in N.H. winter

• Not always poleward, and get convergence in mid-latitudes

• Values are small compared with other components
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4. Energetics

4.5.8 Fig. 13.10, 13.11: Total energy flux

• Mean meridional in tropics, transients in extratropics.

• Seamless transport!

4.5.9 Fig. 13.12: Divergence of the poleward energy flux

Bi-modal structure in tropics (c.f. the TOA radiative fluxes from earlier).

4.5.10 Comparison of different components of the total energy flux

[see figure 1, Trenberth and Stepaniak, upper panel]

• Latent flux equatorward in tropics

• K.E. flux small

• D.S.E. and latent components ‘compensate’ in tropics

4.5.11 Division into monthly and sub-monthly

[see figure 1, Trenberth and Stepaniak]

• Transient (sub-monthly) is poleward

• Longer than monthly → large compensation in Tropics

4.5.12 Ocean – atmosphere division

[see figs. from Czaja and Marshall]

• Ocean important at low latitudes, atmosphere at middle and high latitudes.

• Here infer ocean fluxes from atmospheric fluxes and TOA radiative fluxes.

4.6 Vertical transport of energy

Neglecting FDH p, FDq p
and τ · c (small outside PBL),

∂

∂t

[
E
]

= − 1

R cosφ

∂

∂φ

([
FEφ

]
cosφ

)
− ∂

∂p

[
FEp + gF rad

]

For a steady state, we can define a streamfunction ψE through

−∂ψE
∂p

= 2πR cosφ
[
FEφ

]

1

R

∂ψE
∂φ

= 2πR cosφ
([
FEp

]
+ g
[
F rad

])
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4.6. Vertical transport of energy

To evaluate ψE we need F rad at the TOA, then integrate from pole at the TOA,
then integrate down. (We don’t need Frad or FE in the interior).

4.6.1 Fig. 13.15: annual

• inflow at TOA between -30◦ and 30 ◦.

• Much passes through to surface of tropical oceans

• Further poleward, much is fluxed polewards by circulation and out through
extratropical OLR

4.6.2 Fig. 13.15: DJF and JJA

• Large inflow into summer hemisphere and outflow in winter hemisphere.

• Ocean heat storage as streamlines reach surface

• Tilting → role of circulation
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5 Forcing of the zonal mean circulation

Refer to Section 14.5 of Peixoto and Oort (1992).

5.1 Introduction

The goal is to investigate the effect of eddies on the zonal-mean state of the atmo-
sphere (by eddies here, we mean departure from zonal mean). Specifically, we will
study the impact of the meridional eddy heat and momentum fluxes on the zonal
mean velocities and potential temperature.

We will see that an efficient way to represent eddy fluxes is a fictitious vector
called the Eliassen Palm flux (EP flux, named after Eliassen and Palm (1961)). Its
meridional component is proportional to the eddy momentum flux, and its vertical
component is proportional to the eddy heat flux.

The EP flux is a very powerful tool to display the impact of eddies on the zonal-
mean fields; the direction of EP flux vector gives the relative contribution of eddy
momentum and heat fluxes, and its divergence indicates the strength of the eddy-
induced forcing on the mean flow (see, e.g., figure 14.9).

5.2 Basic equations in spherical coordinates (λ, φ, p, t)

We will use the quasi-geostrophic approximation, although the theoretical develop-
ment can be generalized to the full primitive equations in the case of small amplitudes
eddies. We start with the basic equations in pressure coordinate:

0 =
1

R cosφ

∂u

∂λ
+

1

R cosφ

∂

∂φ

(
v cosφ

)
+
∂ω

∂p
du

dt
=

tanφ

R
uv + fv − g

R cosφ

∂Z

∂λ
+ Fλ

dv

dt
= −tanφ

R
u2 − fu− g

R

∂Z

∂φ
+ Fφ

cp
T

θ

dθ

dt
= Q

Since we are interested in the zonal mean flow, we take zonal averages of the above
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5. Forcing of the zonal mean circulation

equations. The continuity equation becomes:

1

R cosφ

∂

∂φ

(
[v] cosφ

)
+
∂[ω]

∂p
= 0

In the QG approximation, ω = O(Ro), while u, v are O(1). In addition, it follows
from the continuity equation that the zonal mean [v] = O(Ro), and hence to first
order can be neglected in the equations.

The zonally averaged u equation can be written

∂

∂t
[u] +

1

R cos2 φ

∂

∂φ

(
[u][v] cos2 φ

)
+

∂

∂p

(
[u][ω]

)

= − 1

R cos2 φ

∂

∂φ

(
[u∗v∗] cos2 φ

)
− ∂

∂p

(
[u∗ω∗]

)
+ f [v] + [Fλ]

Using the fact that the zonal mean [v] = O(Ro), as well as the QG scaling ω = O(Ro),
this equation becomes

∂

∂t
[u] = f [v] + [Fλ]−

1

R cos2 φ

∂

∂φ

(
[u∗v∗] cos2 φ

)

The v equation to first order yields the geostrophic relation for [u], which we write
in its thermal wind form so as not to introduce the geopotential as unknown

f
∂[u]

∂p
=

1

Rρ[θ]

∂[θ]

∂φ

We can not neglect the term involving ω in the θ equation, because of the large
static stability of the atmosphere. Nevertheless, we can approximate this term by

d([ω][θ]

dp
∼ [ω]

d[θs]

dp

where θs(p) is the global mean potential temperature profile. Thus the θ eqn becomes

∂

∂t
[θ] + [ω]

∂θs
∂p

=
(p0

p

)κ [Q]

cp
− 1

R cosφ

∂

∂φ

(
[v∗θ∗] cosφ

)

We therefore have 4 equations for 4 unknowns [u], [v], [ω], [θ]. Note that the eddy
fluxes are forcing the mean flow, along with [F ] (dissipation) and [Q] (diabatic heat-
ing).

5.3 Eliassen-Palm flux

5.3.1 An interesting special case: steady, adiabatic, non-dissipative flow

If the flow is steady, adiabatic and non-dissipative, the equations yield

f [v] =
1

R cos2 φ

∂

∂φ

(
[u∗v∗] cos2 φ

)

[ω] = − 1

R cosφ

∂

∂φ

(
[v∗θ∗] cosφ

∂θs
∂p

)
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5.3. Eliassen-Palm flux

(The continuity equation and thermal wind balance are unchanged.)
Thus in that case, the eddies do not influence [u] and [θ], but they do influence

[ω] and [v]. In fact, the effect of the eddies is simply to balance the mean meridional
circulation.

We can now state a result known as the Eliassen-Palm theorem:

In a steady, adiabatic, non-dissipative system, ∇ · F = 0, where

F =

(
Fφ
Fp

)
=

(
−R cosφ

[
u∗v∗

]

fR cosφ
[
v∗θ∗

](
∂θs
∂p

)−1

)

The vector F is called the Eliassen-Palm flux.

5.3.2 Proof of EP theorem

For a steady, adiabatic, non-dissipative flow ( ∂
∂t

= [F ] = [Q] = 0), the equations
yield

[v] =
1

fR cosφ

∂

∂φ

([
u∗v∗

]
cos2 φ

)

[ω] = − 1
∂θs
∂p

1

R cosφ

∂

∂φ

([
v∗θ∗

]
cosφ

)

Plugging these into the continuity equation yields

1

R cosφ

∂

∂φ

(
1

fR cos2 φ

∂

∂φ

([
u∗v∗

]
cos2 φ

)
cosφ

)
+

∂

∂p

(
−1
∂θs
∂p

1

R cosφ

∂

∂φ

([
v∗θ∗

]
cosφ

))
= 0

1

fR2 cosφ

∂

∂φ

(
1

cosφ

∂

∂φ

([
u∗v∗

]
cos2 φ

))
− 1

R cosφ

∂2

∂p∂φ

([
v∗θ∗

]
cosφ

∂θs
∂p

)
= 0

∂

∂φ

[(
1

cosφ

∂

∂φ

([
u∗v∗

]
cos2 φ

))
− ∂

∂p

(
fR
[
v∗θ∗

]
cosφ

∂θs
∂p

)]
= 0

Integrating in φ, we see that the expression inside the square brackets is a function
of p only. But at the poles, v = [v] = v∗ = 0, whence

∂

∂p

([
v∗θ∗

]
∂θs
∂p

)
= 0

Furthermore, it follows from above that at the poles,

∂

∂φ

([
u∗v∗

]
cos2 φ

)
= 0

Therefore the integrand is zero at the pole and

1

R cosφ

∂

∂φ

(
−R

[
u∗v∗

]
cos2 φ

)
+

∂

∂p

(
fR cosφ

[
v∗θ∗

]
∂θs
∂p

)
= 0

or ∇ · F = 0.
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5. Forcing of the zonal mean circulation

5.3.3 Consequence: The non-acceleration theorem

Non-acceleration theorem: If the flow is adiabatic, non-dissipative, and if the diver-
gence of the EP flux is zero, then there is a trivial solution:

∂u

∂t
=
∂θ

∂t
= 0

with [v], [ω] given above.
Proof: plug into the equations.
Thus ∇·F is the total explicit internal eddy forcing of the [u] and [θ] fields. Note

that there could be implicit effects of eddies on the boundary conditions, or eddy
modifications of [Q] and [F ].

5.3.4 Steady (or stationary mean) motion with heat and friction

More generally, if [F ] and [Q] are non zero, then the equations for [v] and [ω] become

[v] =
1

fR cos2 φ

∂

∂φ

(
[u∗v∗] cos2 φ

)
− 1

f
[Fλ]

[ω] = − 1

R cosφ∂θs
∂p

∂

∂φ

(
[v∗θ∗] cosφ

)
+
(p0

p

)κ [Q]

cp
∂θs
∂p

In that case, the continuity equation yields a relation between the diabatic forcing,
the friction forcing, and the divergence of the EP flux:

∂

∂p

((p0

p

)κ [Q]

cp

(∂θs
∂p

)−1
)
− 1

R2 cosφ

∂

∂φ

(
1

f
[Fλ]R cosφ+

1

f
∇ · F

)
= 0

Figure 11.7 on p.256 of Peixoto and Oort (1992) shows the eddy momentum fluxes.
Transient eddies dominate in the upper levels, with convergence in midlatitudes →
equatorward [v] → upper branch of the Ferrel cell, and divergence in tropical and
subtropical latitudes → poleward [v] → upper branch of the Hadley cell.

At low levels, friction dominates; Midlatitude westerlies imply [F ] < 0→ poleward
[v] → lower branch of the Ferrel cell, and low latitude easterlies yield [F ] > 0 →
equatorward [v] → lower branch of the Hadley cell.

Figure 13.5 shows eddy heat fluxes. In midlatitudes, eddy heat flux convergence
yields upward motion ([ω] < 0). Divergence at subtropical latitudes yields subsiding
motion→ downward branch of Ferrel and Hadley cells. In the ITCZ, diabatic heating
dominates (fig 13.2) and yields upward motion (ascending branch of the Hadley cell).
All those results put together yield the 3 cell structure observed on fig 7.19.

Instead of looking at eddy momentum and heat fluxes separately, one can investi-
gate the net effects of eddies on the mean circulation by studying the EP flux vector
and its divergence. We will discuss this further in the following sections.

5.4 Modified momentum and energy equations

We saw earlier that in the thermodynamic equation, there can be a strong cancellation
between the eddy heat flux and the adiabatic cooling [ω]∂θs/∂p.
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5.5. Forcing of the mean meridional circulation

This motivates the definition of a residual mean circulation defined by

ṽ = [v]− ∂

∂p

(
[v∗θ∗]

∂θs/∂p

)

ω̃ = [ω] +
1

R cosφ

∂

∂φ

(
[v∗θ∗] cosφ

∂θs/∂p

)

In other words, ω̃ is the departure from the vertical velocity induced by eddy
heat fluxes, and ṽ is such that the residual circulation (ṽ, ω̃) satisfies the continuity
equation.

With these new variables, the equations become

0 =
1

R cosφ

∂

∂φ

(
ṽ cosφ

)
+
∂ω̃

∂p

∂[u]

∂t
= fṽ + [Fλ] +

1

R cosφ
∇ · F

∂[θ]

∂t
+ ω̃

∂θs
∂p

=
(p0

p

)κ [Q]

cp

f
∂[u]

∂p
=

1

Rρ[θ]

∂[θ]

∂φ

This set of equations makes it clear that the net effect of the eddies in the forcing
of [u] and [θ] can be described by the divergence of the EP flux. In other words, the
eddies force [u] and [θ] ONLY where ∇ · F is non zero. If ∇ · F = 0, we recover the
original equations without the eddy terms.

The residual circulation has a simple interpretation in steady state; the thermo-
dynamic equation implies that ω̃ is the vertical velocity corresponding to the mean
diabatic heating, and ṽ follows from the continuity equation. Therefore (ṽ, ω̃) repre-
sents the circulation arising from the zonal mean heating [Q].

5.5 Forcing of the mean meridional circulation

One can define a streamfunction for (v, ω), as well as for the residual circulation (ṽ, ω̃)

[v] =
g

2πR cosφ

∂ψ

∂p

[ω] = − g

2πR2 cosφ

∂ψ

∂φ

ṽ =
g

2πR cosφ

∂ψ̃

∂p

ω̃ = − g

2πR2 cosφ

∂ψ̃

∂φ

and the two streamfunctions are related by

ψ̃ = ψ − 2πR cosφ

g

[v∗θ∗]

∂θs/∂p
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5. Forcing of the zonal mean circulation

From the equations of motion, the residual streamfunction satisfies the diagnostic
equation

f 2g

2πR cosφ

∂2ψ̃

∂p2
− g

2πR2 cosφρ[θ]

∂

∂φ

( 1

R

∂θs
∂p

∂ψ̃

∂φ

)

=
1

Rρ[T ]

∂

∂φ

[Q]

cp
− f ∂[Fλ]

∂p
− f

R cosφ

∂

∂p
∇ · F

The strength of the forcing thus depends on the eddies through the divergence of
the EP flux.

Similarly, one can derive an equation for ψ

f 2g

2πR cosφ

∂2ψ

∂p2
− g

2πR2 cosφρ[θ]

∂

∂φ

( 1

R

∂[θ]

∂p

∂ψ

∂φ

)
=

1

Rρ[T ]

∂

∂φ

[Q]

cp
− f ∂[Fλ]

∂p

− 1

Rρ[θ]

∂

∂φ

(
1

R cosφ

∂

∂φ

(
[v∗θ∗] cosφ

))
+

f

R cos2 φ

∂2

∂p∂φ

(
[u∗v∗] cos2 φ

)

This equation is frequently written in terms of [ω] and is known as the omega
equation.

5.6 Transformed Eulerian Mean

ψ is known as the Eulerian mean streamfunction, whille ψ̃ is the ‘Transform Eulerian
Mean’ (TEM) streamfunction. The transformed streamfunction is similar to the (dry)
isentropic streamfunction everywhere except near the surface. This makes sense as
both have vertical motion directly related to diabatic heating. Both fields are plotted
in Fig. 5.1 from ERA-40 data. (See e.g. Vallis, 2006, for more details.)

Near the surface, boundary layer fluxes are important and ∂θs/∂p may be small,
also surface intersections of isentropes are important. Note: ω̃ not zero at surface
unless no-slip condition applies so that [v∗θ∗] = 0.

5.7 Example of EP flux diagram

Figure 14.9 of Peixoto and Oort (1992) shows cross sections of EP flux represented
by arrows, and contours of its divergence (note that an upward pointing F → its
p-component is negative → poleward eddy heat flux).

• The direction of the arrow indicates the relative importance of the meridional
eddy heat flux (vertical) and momentum flux (horizontal). The divergence
contours indicate the strength of the eddy forcing on the mean flow.

• Stationary eddy EP fluxes are typically smaller than EP fluxes associated with
transient eddies. The divergence is larger at low levels at mid and high latitudes.
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5.7. Example of EP flux diagram
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Figure 5.1: Transformed Eulerian Mean streamfunction ψ̃ (upper) and isentropic
streamfunction (lower), both in units of 109 kg s−1.

• The EP flux is upward for transient eddies and stationary eddies in winter, in-
dicating that poleward eddy heat fluxes and baroclinic energy conversion dom-
inate.

• The EP flux tilts equatorward at upper levels, indicating momentum flux con-
vergence near the jet.
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6 Available energy and the atmospheric
energy cycle

6.1 Heat engine

Have seen that the kinetic energy is less than 1
10

% of the total energy in the at-
mosphere. Also, less than 1% of heat absorbed in the atmosphere is converted to
K.E.

We can view the atmosphere as a heat engine:

• Transports heat poleward and upward

• High temperatures near surface and in tropics

• Cold temperatures at high latitudes and in upper atmosphere

• Heat flows from warm source to cold sink

Carnot engine efficiency is defined as the ratio of work to energy input. As a very
rough estimate for the atmosphere, consider

h =
Tw − Tc
Tw

=
∆T

Tw
∼ 40

290
∼ 10− 15%

where we’ve used the vertical ∆T ∼ 290 − 250 ∼ 40 K; we might also take the
horizontal ∆T ∼ 35 K. The actual efficiency is lower than this crude estimate – see
later for entropy analysis.

We need a more nuanced analysis of energy cycle.

6.2 Available potential energy (Lorenz, 1955, 1978, 1979)

6.2.1 Definition

Total energy =
∫
dm(I + Φ +LH +KE), where we can denote (I + Φ +LH) as the

non-kinetic energy (NKE).
Total energy is conserved under adiabatic, frictionless flows → ∆KE = −∆(I +

Φ + LH). What part of NKE could be converted to KE?
An intuitive argument: If we have a stably stratified fluid with no horizontal

temperature gradients, there is no energy available for conversion to KE.

67



6. Available energy and the atmospheric energy cycle

The available potential energy (APE) is the biggest possible ∆KE achievable
under a reversible adiabatic transformation. It thus corresponds to the most negative
∆NKE, that is

APE =

∫
dm
((
I + Φ + LH

)
−
(
I + Φ + LH

)
ref

)

where ref refers to the reference state, i.e. the state with lowest NKE achievable by
rearrangement of the mass of the atmosphere using reversible adiabatic processes.

We could in principle calculate APE by brute force approach:

• evaluate NKE of all possible adiabatic transformations, and choose the largest
(−∆NKE)

• such an approach may be needed in moist, conditionally unstable case – no
completely general algorithm devised yet.

Note we don’t require that the rearrangement is dynamically possible (i.e. satis-
fying momentum equations): only thermodynamic constraints enter.

6.2.2 What properties does the reference state have?

1. Isobaric surfaces must be horizontal

• otherwise could impose a zero wind field and allow the system to evolve
under the dynamic equations with no friction or external heating

• this would lead to acceleration and production of KE and reduction of
NKE

2. Reference state must be in hydrostatic balance

• same reasoning as for point 1

• implies ρ must be horizontally uniform ( and same for θ, T , etc.)

3. Reference state must be statically stable

• otherwise could impose weak wind field and produce more KE

• In dry case, this implies θ increases with height

• In moist case, θ∗e can’t increase with height in saturated air

In conclusion:

• For a dry atmosphere, the reference field has horizontal θ surfaces, with θ in-
creasing upwards (and θ conserved by parcels in rearrangement).

• For a moist atmosphere, θ constant in reference state (w.r.t horiztonal) when
unsaturated, θ∗e and θ constant where saturated.
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6.3. Computing APE

6.3 Computing APE

We will derive a formula for the APE (following Lorenz) in the dry case (LH = 0),
and then derive an approximate version of it that involves the temperature variance.

6.3.1 Exact formula for dry APE

APE =

∫
cp
(
T − Tr

)
dm

=

∫
cpT
(
1− Tr/T )dm

where (T − Tr) is known as the efficiency factor.
Useful to change to θ coordinates as dry adiabatic parcel motions conserve θ (note

that if θ was truly conserved, this would imply APE = 0!)
Potential energy per unit area is

∫ p0

0

dp

g
cpT =

∫ p0

0

dp

g
cpθ
( p

p00

)κ

=
cp

g(1 + κ)pκ00

∫ p0

0

θdpκ+1

Now integrate by parts:

=
cp

g(1 + κ)pκ00

([
θpκ+1

]SFC
TOA
−
∫ θSFC

θTOA

pκ+1dθ

)

Note that at TOA p = 0 implies θ →∞.

=
cp

g(1 + κ)pκ00

(∫ ∞

θ0

pκ+1dθ + θ0p
κ+1
0

)

Use convention that p = p0 for θ below surface

=
cp

g(1 + κ)pκ00

∫ ∞

0

pκ+1dθ

So potential energy is related to pressure distribution on θ surfaces.
To evaluate APE need to know how p and θ are related in the reference state.

See Fig. 6.1. Under an adiabatic transformation, θ surfaces act as material surfaces.
(We are assuming a statically stable state).

In particular the amount of mass above a given isentropic surface remains con-
stant, that it

p̃(θ) =

∫ ∫
p(x, y, θ)dxdy∫ ∫

dxdy

remains constant. Here (̃·) denotes a global mean.
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6. Available energy and the atmospheric energy cycle

actual reference

!3

!2
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Figure 6.1: Schematic of the actual and reference states of the isentropic surfaces.

The reference state has θ constant on pressure surfaces, implying pressure constant
on θ surfaces:

pr = p̃r(θ) = p̃(θ)

Therefore,

APE =
cp

g(1 + κ)pκ00

∫ ∞

0

(
p̃κ+1 − p̃κ+1

)
dθ

No approximations have been made thus far. Note the following

κ+ 1 > 1→ p̃κ+1 − p̃κ+1 ≥ 0

APE = 0→ p ≡ p̃

6.3.2 Approximate form: APE in terms of pressure variance along isentropes

We now make an approximation that leads to the ‘quadratic’ formula of Lorenz.
Define the deviation from global mean

p = p̃+ p′

and assume that
∣∣∣p′p̃
∣∣∣ is small. (A similar approximation is made in Q.G. – related to

slope of isentropes).

(
p̃+ p′

)1+κ ' p̃(1+κ)
(

1 +
p′

p̃

)1+κ

= p̃(1+κ)
(

1 +
p′

p̃
(1 + κ) +

p′2

p̃2

κ(1 + κ)

2
+ . . .

)

which implies

p̃κ+1 − p̃κ+1 ' p′2

p̃2

κ(1 + κ)

2
p̃(1+κ)

and therefore

APE ' cpκ

2gpκ00

∫ ∞

0

dθp̃(1+κ)
(̃p′
p̃

)2
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6.3. Computing APE

Figure by MIT OCW. 

Now consider the !  variations on p!  at the same latitude, !.  Since the !  variations are 

primarily vertical, or equivalently, vary primarily with pressure, we can write: 

!p

"!

' !p!

p 
# ' = The minus sign is necessary since < 0,  (Note that as drawn, p', ! ' < 0 ). .  

!" 

"# 

Substituting this into our integrand for P, and changing coordinates from !  to p! : 

d! = 

) 
, before integrating over x,y we have that the integrand 

C
P
! 

p! !"1
# '2 $p!

dp;!  Note that ! '  is now the variation of !  along a constant p surface,
2gp
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Figure 6.2: Figure by MIT OCW.

giving APE in terms of pressure variance on isentropes.
Note that the next term in the expansion is

O
(p′
p̃

κ− 1

3

)
∼ 0.05

6.3.3 APE in terms of temperature variance on constant pressure surfaces

If θ and p surfaces are quasi-horizontal, then

p ' p̃
(
θ̃(p)

)

[Insert little sketch] where θ̃(p) is the average θ on a p surface.
At a given point with pressure p and potential temperature θ

p′ = p− p̃
= p̃(θ̃)− p̃(θ)
= p̃(θ − θ′)− p̃(θ)

' −θ′∂p̃
∂θ

Alternatively, consider isentrope θ with average pressure = p̃(θ)
Consider a point A on θ at latitude φ1, corresponds to pressure p = p̃+ p′.
At p = p̃(θ) at latitude φ1, have potential temperature θ̃ + θ′ = θ + θ′. (This

assumes θ̃
(
p̃(θ)

)
= θ).

Given quasi-horizontal surfaces,

θ′ ' −∂θ
∂p
p′ ' −∂θ̃

∂p
p′

(see Fig. 6.2).
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6. Available energy and the atmospheric energy cycle

APE =
cpκ

2gpκ00

∫ ∞

0

dθp̃1+κ−2θ̃′2
(∂p̃
∂θ

)2

=
cpκ

2gpκ00

∫ p0

0

dp̃p̃(κ−1)
(
− ∂p̃

∂θ

)
θ̃′2

where p̃ is now an integration variable.
Alternatively, we can use (for hydrostatic states)

∂θ

∂p
=
κθ

p

(Γd − Γ)

Γd
= −κθcp

gp

(
Γd − Γ

)

where Γ = −∂T/∂z,Γd = g/cp. This implies

−∂p̃
∂θ
' gp̃

κθ̃cp

1

(Γd − Γ̃)

and
θ̃′2

θ̃

p̃κ

pκ00

=
T̃ ′2

T̃

giving

APE =
1

2

∫ p0

0

T̃ ′2

T̃

1

(Γd − Γ̃)
dp

6.3.4 What fraction of potential energy is available?

Now consider that

I + Φ =

∫ p0

0

dp

g
cpT̃ =

1

Γd

∫ p0

0

dpT̃

so that
APE

I + Φ
∼ 1

2
Γd
(
Γd − Γ̃

)−1 T̃ ′2

T̃ 2

If Γ̃ ∼ 2
3
Γd and T̃ ′2 ∼ (15 K)2, then

APE

I + Φ
∼ 3

2

152

2502
=

1

2
%

showing that less than 1% of potential energy is available for conversion to kinetic
energy.

Earlier we had KE/(Φ + I) ∼ 10−3. Putting these together,

KE

APE
∼ 0.001

0.005
=

1

5

Note we have ignored horizontal variations in the static stability factor; this is an
acceptable approximation in the present climate.
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6.4. Decomposing APE into eddy and mean components

More generally,

APE ∼ (horizontal temperature fluctuations)2

static stability

∼ (horizontal temperature gradients)2L2

static stability

∼ (isentropic slope)2 × (static stability)× L2

Globally find dry APE of zonal mean state ∼ 3 MJ/m2, and eddy kinetic energy
∼ 0.7 MJ/m2.

Including moisture increases global available energy by ∼ 30% for the current
climate. The difference is considerable smaller if the tropics is excluded.

6.4 Decomposing APE into eddy and mean components

APE per unit area =
1

2

∫ p0

0

dp
T̃ ′2

T̃

1

(Γd − Γ̃)

(Total) APE =
1

2

∫ p0

0

dp

g

∫
dxdy

g(T 2 − T̃ 2)

T̃ (Γd − Γ̃)

and using T ′ = T − T̃ , we can write

T ′2 = T 2 + T̃ 2 − 2T T̃

T̃ ′2 = T̃ 2 − T̃ 2

giving

APE =
cp
2

∫
Γd

(Γd − Γ̃)

(T 2 − T̃ 2)

T̃
dm

APE =
cp
2

∫
s(T 2 − T̃ 2)dm

where

s = s(p) =
Γd

T̃

1

(Γd − Γ̃)

Work with eddies defined w.r.t. zonal mean
For kinetic energy, K = KM +KE, where

KM =
1

2

∫ (
[u]2 + [v]2

)
dm

KE =
1

2

∫ [
u∗2 + v∗2

]
dm
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6. Available energy and the atmospheric energy cycle

For available potential energy,

[
T 2
]

=
[
T
]2

+
[
T ∗2
]
→ APE = APEM + APEE

→ APEM =
cp
2

∫
s
(
[T ]2 − T̃ 2

)
dm

APEE =
cp
2

∫
s
[
T ∗2
]
dm

6.4.1 Aside: incompressible limit of ideal gas

In the incompressible limit, the sound speed →∞. Thus

cp
cv
→∞

1 +
R

cv
→∞

κ =
R

cp
=

R

cv +R
=

1
cv
R

+ 1
→ 1

θ = T
(p00

p

)κ
∼ 1

ρ
is conserved

APE =
cp

g(1 + κ)pκ00

∫ ∞

0

p̃(κ+1) − p̃(κ+1)dθ

APE =
cp

2gp00

∫ ∞

0

(
p̃2 − p̃2

)
dθ

So in the incompressible limit, APE can be expressed as a variance without the
need to make an approximation. For the ocean, one can express APE in terms of
variance of height in density surfaces, or density on height surfaces.

6.4.2 Time evolution of kinetic and available potential energy

Now we will derive the equations governing the evolution of mean and eddy kinetic
and available potential energy. Begin by considering a generic variable A.

∂A

∂t
= −v · ∇A− ω∂A

∂p
+ s

A = [A] + A∗

∂[A]

∂t
= −

[
v · ∇A

]
−
[
ω
∂A

∂p

]
+ [s]

Multiply by [A]:

1

2

∂

∂t
[A]2 = −[A]

[
v · ∇A

]
− [A]

[
ω
∂A

∂p

]
+ [A][s]
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6.4. Decomposing APE into eddy and mean components

Expand the advective terms

[
v · ∇A

]
= [v] · ∇[A] +

[
v∗ · ∇A∗

]
etc.

to get

1

2

∂

∂t
[A]2 = −1

2
[v] · ∇[A]2 − 1

2
[A]
[
v∗ · ∇A∗

]
− 1

2
[ω]

∂[A]2

∂p
− [A]

[
ω∗
∂A∗

∂p

]
+ [A][s]

Now use continuity

∇ · v +
∂ω

∂p
= 0

∇ · v∗ +
∂ω∗

∂p
= 0

∇ · [v] +
∂[ω]

∂p
= 0

1

2

∂

∂t
[A]2 = −1

2

1

R cosφ

∂

∂φ

(
[v][A]2 cosφ

)
− 1

2

∂

∂p

(
[ω][A]2

)

+ [A][s]− [A]
1

R cosφ

∂

∂φ

[
v∗A∗ cosφ

]
− [A]

∂

∂p

[
ω∗A∗

]

or

1

2

∂

∂t
[A]2 =−

∂
(
[v]1

2
[A]2 cosφ

)

R cosφ∂φ
− ∂

∂p

(
[ω]

1

2
[A]2

)
flux divergence terms

+ [A][s] source / sink term

−
∂
(
[v∗A∗][A] cosφ

)

R cosφ∂φ
− ∂

∂p

([
ω∗A∗

]
[A]
)

flux divergence terms

+
[
v∗A∗

]∂[A]

R∂φ
+
[
ω∗A∗

]∂[A]

∂p
conversion from eddy to mean

and note that all the flux divergence terms vanish in the global integral.
Similarly, multiply ∂A/∂t equation by A∗:

A∗
∂A

∂t
= −vA∗ · ∇A− ωA∗∂A

∂p
+ A∗s

= −vA∗ · ∇[A]− ωA∗∂[A]

∂p
+ A∗s− vA∗ · ∇A∗ − ωA∗∂A

∗

∂p

Now take the zonal average

[
A∗
∂A∗

∂t

]
= −

[
v∗A∗

]∂[A]

R∂φ
−
[
ω∗A∗

]∂[A]

∂p
+
[
A∗s∗

]

−
[
v · ∇1

2
A∗2
]
−
[
ω
∂

∂p

(1

2
A∗2
)]
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6. Available energy and the atmospheric energy cycle

or using the continuity equation

∂

∂t

1

2

[
A∗2
]

=− 1

R cosφ

∂

∂φ

[
v

1

2
A∗2 cosφ

]
− ∂

∂p

[
ω

1

2
A∗2
]

flux divergence terms

+
[
A∗s∗

]
source / sink term

−
[
v∗A∗

]∂[A]

R∂φ
−
[
ω∗A∗

]∂[A]

∂p
conversion from mean to eddy

Apply this approach to quadratic quantities – kinetic energy K = KM +KE and
available potential energy P = PM + PE (use P instead of APE for brevity).

We will integrate over the mass of the atmosphere and disregard boundary terms.
From the momentum equations:

∂

∂t
KM = C

(
PM , KM

)
+ C

(
KE, KM

)
−D

(
KM

)

C
(
A,B

)
: conversion from A to B

D
(
KM

)
: dissipation of KM

In particular,

C
(
PM , KM

)
= −

∫
[ω][α]dm

= −
∫

[v]g
∂[Z]

R∂φ
dm

which says that kinetic energy in zonal-mean flows can be generated by mean merid-
ional motion down the meridional pressure gradient, or symmetric circulations in-
volving the rising of less dense air and the sinking of dense air.

D
(
KM

)
=−

∫ (
[u][Fλ] + [v][Fφ]

)
dm

C
(
KE, KM

)
=

∫
[v∗u∗] cosφ

∂

∂φ

[u]

R cosφ
dm

+

∫
[ω∗u∗]

∂[u]

∂p
dm

+

∫
[v∗2]

∂[v]

R∂φ
dm−

∫
[v]

tanφ

R
[u∗2]dm

+

∫
[ω∗v∗]

∂[v]

∂p
dm

→ Conversion from eddy to mean when transports of momentum (vertical and merid-
ional) are up gradient.

In general, up-gradient fluxes remove eddy variance and strengthen the mean
gradient while down-gradient fluxes (e.g. diffusive fluxes) generate eddy variance and
weaken the mean gradient.
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6.4. Decomposing APE into eddy and mean components

For the eddy kinetic energy KE

∂KE

∂t
=C
(
PE, KE

)
− C

(
KE, KM

)
−D

(
KE

)

C
(
PE, KE

)
= −

∫
[ω∗α∗]dm

D
(
KE

)
= −

∫ [
u∗F ∗λ

]
dm−

∫ [
v∗F ∗φ

]
dm

→ Positive conversion from PE to KE when vertical wind anomalies along a latitude
circle are correlated with density anomalies, such that light air rises and dense air
sinks.

For the mean available potential energy

PM =
cp
2

∫
s
(
[T ]2 − T̃ 2

)
dm

Begin with
∂T

∂t
= −v · ∇T − ωT

θ

∂θ

∂p
+
Q

cp

and multiply by cps
(
[T ]− T̃

)
, then integrate over the domain.

∂PM
∂t

=G
(
PM
)
− C

(
PM , PE

)
− C

(
PM , KM

)

G
(
PM
)

=

∫
s
(
[T ]− T̃

)(
[Q]− Q̃

)
dm

→ Generation of PM by heating of warm air and cooling of cold air (e.g. high vs.
low latitudes)

C
(
PM , PE

)
=− cp

∫
s
[
v∗T ∗

]∂[T ]

R∂φ
dm

− cp
∫
p−κ
[
ω∗T ∗

] ∂
∂p

(
spκ
(
[T ]− T̃

))
dm

→ Conversion from mean to eddy APE by poleward or upward heat transport down
the mean temperature gradients.

An equation for PE can also be derived by multiplying ∂T/∂y by cpsT
∗ and

averaging. We’ll skip straight to the answer:

∂PE
∂t

=G
(
PE
)

+ C
(
PM , PE

)
− C

(
PE, KE

)

G
(
PE
)

=

∫
s
[
T ∗Q∗

]
dm

→ generation by heating anomalies and temperature anomalies that are correlated
along a latitude circle. Such heating could be radiative damping or latent heating.
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6. Available energy and the atmospheric energy cycle
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Figure 6.3: Schematic of the Lorenz energy cycle.
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C
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C
(
PM , KM

)
D
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)

G
(
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(thermally direct)

(involves E-P fluxes)

Figure 6.4: Lorenz energy cycle in TEM (Plumb, 1983).

These results are summarized schematically in Fig. 6.3 (see also Peixoto and Oort
14.3). Note the connection to the heat engine concept: generation of PM+PE requires
heating of warm regions and cooling of cold regions.

The interpretation depends on one’s choice of mean. For TEM, one finds a dif-
ferent picture, shown in Fig. 6.4 (Plumb, 1983) (note KE, KM , PE, PM definitions
unchanged in Plumb analysis).

In QG we have

∂[u]

∂t
= f [v]− 1

R cos2 φ

∂

∂φ

(
[u∗v∗] cos2 φ

)

∂[θ]

∂t
= −[ω]

∂θs
∂p
− 1

R cosφ

while in TEM

∂[u]

∂t
= fṽ +

1

R cosφ
∇ · F

∂[φ]

∂t
= −ω̃ ∂θs

∂p
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6.5. Observed energy cycle

In this form, KE to KM is now proportional to [u]∇·F (where F is the Eliassen-Palm
flux vector).

6.5 Observed energy cycle

We will refer to several figures from Peixoto and Oort (1992)

6.5.1 Fig. 14.4: Contributions to APE and KE vs. latitude

• Since APE is not defined locally, these must be interpreted with caution

• The APE curves using annual statistics are not very meaningful as they include
the seasonal cycle

• Higher PM in S.H. due to larger pole-to-equation temperature difference.

6.5.2 Fig. 14.6: Contributions to energy conversions vs. latitude

• Other than the seasonal cycles, both the hemispheres are similar

• C
(
PM , PE

)
is generally positive and peaks in midlatitudes where the meridional

temperature gradient and poleward heat flux are maximum

• C
(
KE, KM

)
is generally positive – eddy fluxes of momentum act to maintain

the jet structure

• C
(
PM , KM

)
is positive for the thermally direct Hadley cells and negative for

the thermally indirect Ferrel cells.

6.5.3 Horizontal spectral distributions of energy conversions

Can also look at spectral energy budgets for each spherical wavenumber n.
See Fig.1 and Fig. 6b from Koshyk and Hamilton (2001).

• From a high resolution GCM (smallest length scale ∼ 35 km

• Nonlinear advection transfer from medium wavenumbers to high and low wavenum-
bers

• Conversion from PE to KE important at all scales

• Dissipation important at all scales

• → simple inertial range picture inapplicable!
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6. Available energy and the atmospheric energy cycle

(1.84)

(0.22)

1.79 0.20

0.05

2.01

(1.81)

(0.25)
KM

7.8

KE

6.6

PE

5.5

PM

43.2

Figure 6.5: Observed global energy cycle. Units are W m−2 (conversions) and 105

J m−2 (reservoirs). G and D values are residuals, all other quantities are calculated
directly. Computed from ERA40 data by Li et al. (2007).

6.5.4 Global energy cycle

An estimate of the global energy cycle is shown in Fig. 6.5, based on Li et al. (2007)
– from ERA40 data.

We can now describe the energy cycle of the atmosphere:

1. Radiative heating and cooling maintain a largely zonally symmetric north-south
gradient of temperature in each hemisphere

• G
(
PM
)

= 1.84 W/m2

2. Midlatitude eddies deform the zonal symmetry and generate eddy variance

• C
(
PM , PE

)
= 1.79 W/m2

• the dominant (QG) contribution is
[
v∗T ∗

]
∂T
∂φ

3. Through mechanisms such as baroclinic instability and convection, some of the
PE is converted to kinetic energy of disturbances

• C
(
PE, KE

)
= 2.01 W/m2

• note subgrid contribution not included in Li et al. analysis, Steinheimer
et al. (2008) suggest 50% more conversion globally from convection scheme(
[ω∗α∗]

)
.

4. Eddies transport momentum and convert KE to KM

• C
(
KE, KM

)
= 0.2 W/m2

•
[
v∗u∗

]
∂
∂φ

(
[u]

R cosφ

)

5. Mean meridional circulations convert between PM and KE. Positive conversion
in Tropics (Hadley cells), negative in midlatitudes (Ferrel cells). Net is small
and positive.
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6.5. Observed energy cycle

• C
(
PM , KE

)
= 0.05 W/m2

• (Peixoto and Oort found −0.15 W/m2)

6. Kinetic energy of eddies is dissipated in boundary layer and by a cascade to
small scale turbulence (c.f. spectral discussion earlier)

• 1.81 W/m2

• (most of conversion C
(
PE, KE

)
= 2.01 W/m2 )

7. Some of the kinetic energy of zonal mean flow dissipated (primarily near surface)

• 0.25 W/m2

• (small fraction actually goes into ocean circulation)

In summary:

• Total KE ∼ 14× 105 J/m2

• Total dissipation ∼ 2 W/m2

• → timescale ∼ 1.4×106

2
s ∼ 106 s ∼ 10 days

6.5.5 Table 14.1, Peixoto and Oort

• Ratio of KE to KE + APE roughly constant, ∼ 20%

– use to understand changes with climate change?

• Rough equipartition between KE and PE.

• Efficiency of heat engine (taking the absorbed incoming solar radiation as 240
W/m2):

2 W/m2

240 W/m2
∼ 1%

• APE and KE higher in winter, also dissipation and conversion, but generation
of APE bigger in summer.
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7 Entropy budget of the atmosphere

The 2nd law says

∆s =
Qext

T
+ ∆sirr ∆sirr ≥ 0

with Qext the external heating, and s = cp log θ+ const, a state variable.
For the Earth system as a whole, the external heating is purely radiative. Solar ra-

diation peaks at wavelength λ ' 0.5 µm (shortwave), corresponding to a temperature
of T ∼ 5760 K. On the other hand, terrestrial radiation is emitted at temperature
T ∼ 250 K, corresponding to a wavelength of λ ' 10µm (longwave).1

The Earth thus receives radiation low in entropy and emits radiation high in en-
tropy. This implies than the Earth system generates entropy by irreversible processes.

The simplest analysis views dry atmosphere as acted on by external heating (e.g.
latent heating, radiative heating).

In the Energetics sections we defined the heating rate

Qh = −1

ρ

(
∇ · F rad +∇ · JDH

)
− L(e− c)

Regard this as external.
Frictional dissipation is irreversible work, with associated entropy generationQf/T .

Recall that

Qf = −1

ρ
τ : ∇× c

Key point: in long-term mean, atmosphere does not accumulate entropy (remem-
ber that entropy is a state variable).

∫

V

ρ
ds

dt
dV = 0

which implies that ∫

V

ρ
Qh +Qf

T
dV = 0

But Qf ≥ 0 and rho, T > 0, so

∫

V

ρQh

T
dV ≤ 0

1These values can be computed using Wien’s law λmax = b
T , where λmax is the wavelength of

peak blackbody intensity, and b = 2.9× 10−3 m K−1.
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7. Entropy budget of the atmosphere

So Qh and T must have positive correlation.
Thus we must heat warm areas and cool cold areas in order to do work and have

dissipation. This is the same conclusion we reached from APE analysis.
Note in long-term mean ∫

V

ρQhdV ' 0

(energy balance)
Can make more nuanced analysis by only taking sensible heating as external at

the boundaries. Take the example of diffusive (sensible) heat flux JDH .

ρ
ds

dt
= −∇ · J

D
H

T
+ ...

∂

∂t

∫

V

ρsdV = −
∫

V

1

T
∇ · JDHdV + ...

= −
∫

V

∇ ·
( 1

T
JDH

)
dV −

∫

V

1

T 2
JDH · ∇TdV

= −
∫

S

1

T
JDH · ndS −

∫

V

1

T 2
J D
H · ∇TdV

where the first term is transport of entropy into the atmosphere, and the second term
represents internal generation.

For a diffusive heat flux
JDH = −K∇T

we can write

−
∫

V

1

T 2
J D
H · ∇TdV =

∫

V

K

T 2

(
∇T
)2
dV ≥ 0

As expected, diffusion of heat in the atmosphere leads to entropy production.
Can also try to evaluate entropy budget of atmosphere as a control volume. It is

difficult to correctly treat the radiative fluxes. Peixoto and Oort treat entropy fluxes
as (energy flux / T), and entropy production associated with irreversible absorption
of radiation as (

− ∇ · Frad
Trad

+
∇ · Frad
Tair

)

Characteristic temperatures are also assigned to each term. Results roughly con-
sistent with balance between entropy production in the atmosphere and net flux out
of atmosphere. (Note that latent heating is viewed as external heating).

See Fig. 15.2 in Peixoto and Oort (1992).
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8 Hydrological cycle

The hydrological cycle is critical for energy transport, cloud and water vapor radiative
effects, influences ocean circulation, agriculture, groundwater supplies, etc.

8.1 Basics

8.1.1 Some definitions

q = specific humidity =
mass vapor

total mass

q =
εe

p− (1− ε)e

ε =
Rd

Rv

=
mv

md

' 0.622

e = vapor pressure

where mv,md are molecular weights of vapor and dry air. (Note also Rd ' 287
J/kg/K).

8.1.2 Clausius-Clapeyron relation

Relates saturation vapor pressure to temperature. Approximately,

es ' eo exp
(
− εL

Rd

( 1

T
− 1

T0

))

where

e0 = 611Pa

T0 = 273K

εL

Rd

= 5420K
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8. Hydrological cycle

To gain intuition, let T = 288K + T ′. Thus

qs '
constant

p
exp

(
− 5420

288 + T ′

)

' constant

p
exp

(
− 5420

288

(
1− T ′

288

))

' constant

p
exp

(
0.065T ′

)

So taking T ′ = ±11 K implies a doubling or halving of qs. (Recall log 2 = 0.69,
and 1

qs

∂qs
∂T

increases with decreasing temperatures).
Thus, temperature variations are more important than pressure variations for

specific humidity, and qs falls off quickly with height and latitude.
Now calculate a scale height for q near the surface:
If T ′ = −Γz and Γ = 5 K/km, then

qs ∼ exp
(
− z

H

)
∼ exp

( T ′
ΓH

)

⇒ 1

ΓH
= 0.065

⇒ H =
1

Γ0.065
' 1

0.065× 5km−1 ' 3km

Review the zonal mean plots of specific and relative humidity from earlier in the
course (ERA40). Recall relative humidity is defined

r =
e

es

8.1.3 Some global values

Will derive water budgets for the atmosphere, and then discuss the ‘temperature of
last saturation’ approach to understanding mean relative humidity distributions.

But first a few numbers to improve intuition on the atmospheric water cycle:

1. Global-mean precipitable water vapor (column integral of water vapor) = 25
kg/m2, whereas for liquid water and ice in the atmosphere ' 0.1 kg/m2 (Tren-
berth and Smith, 2005). We thus don’t expect horizontal fluxes of condensate
to be important on large scales.

2. Global-mean precipitation ∼ 1 m/year.

⇒ residence time =
water vapor

precip. rate
=

25
1000

m
1m

365 days

=
25mm

2.7mm/day
∼ 10 days

So water vapor is cycled through the atmosphere every 10 days or so.
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8.1. Basics

3. Amount of water vapor in column of atmosphere:

∼ 25kg/m2

ρ = 1000kg/m3
∼ 25 mm ∼ 1 inch

(e.g. for midlatitudes), and storms convert only a fraction of this precipita-
tion (<30%) (see Trenberth 2003) [WHAT IS THIS SUPPOSED TO REFER-
ENCE??].

But it often rains much more than this in a day (conditional rain rate ∼ 45
mm/day). Evaporation ∼ mean precip. ∼ 2.7 mm/day. So source of moisture
for precipitation is not primarily evaporation during a storm, but rather non-
local water vapor in the atmosphere. Also it doesn’t rain very often (but this
depends on threshold and spatial scale).

The record daily rain rate is 1825 mm/day (in one day – roughly 70 inches) at
La Reunion Island off Madagascar (1966).

See Fig. 12.2 in Peixoto and Oort, an overview of reservoirs and fluxes between
land, ocean and atmosphere.

Before turning to the atmosphere, consider water balance on land:

S = P − E −Ro −Ru

where S is the rate of storage, E is evapotranspiration (and sublimation over ice), Ro

is surface runoff, and Ru is subterranean runoff.
For long times (S = 0) and large regions (Ru = 0),

P − E = Ro

In the atmosphere, precipitable water is

W (λ, φ, t) =

∫ p0

0

dp

g
q

Conservation of water gives

∂q

∂t
+∇ ·

(
qv
)

+
∂qw
∂p

= s(q) +D

with
s = e− c

D = −α∇ · JDq ' −α
∂

∂z
JDqz

Similarly for condensate

∂qc
∂t

+∇ ·
(
qcvc

)
+
∂qc
∂p

ωc = −(e− c)

where vc and ωc are suitable net velocities of the condensate (this implies some kind
of bulk description for the droplets or ice particles).
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8. Hydrological cycle

Adding the equations,

∂

∂t

(
q + qc

)
+∇ ·

(
qcvc + qv

)
+

∂

∂p

(
qcωc + qω

)
= D

Integrating vertically yields

∂

∂t

(
W +Wc

)
+∇ ·

(
Q+Q

c

)
= E − P

with terms defined as

Wc =

∫ p0

0

qc
dp

g
P = ωcqc

∣∣
sfc

Q =

∫ p0

0

qv
dp

g
E = JDqz

∣∣
sfc

Q
c

=

∫ p0

0

qcv
dp

g

But
∂Wc

∂t
� ∂W

∂t

and

Q
c
� Q

so that
∂W

∂t
+∇ ·Q = E − P

We can also link to the terrestrial budget for long times and large regions

Ro = −∇ ·Q

(i.e., the runoff balances the convergence of atmospheric water vapor fluxes).
Averaging zonally (and in time) yields

∂

∂t
[W ] +

1

R cosφ

∂

∂φ

(
[Qφ] cosφ

)
= [E − P ]

and

[Qφ] =
1

g

∫
dp
(

[q][v] + [q∗v∗] + [q′v′]
)

But we often care about zonal fluxes of water vapor since they contribute to
regional convergence and divergence.

8.2 Observed vapor transport

Refer to figures in Peixoto and Oort (1992).
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8.2. Observed vapor transport

8.2.1 Fig. 12.7 and 12.9: Vertically integrated zonal transport of water vapor

These largely follow the circulation near the surface, but note the structure of the
transient eddy fluxes (often associated with land-ocean contrast ⇒ dry winds from
land vs. moist winds from the ocean).

8.2.2 Fig. 12.10, 12.11: Meridional flux of water vapor

• Transient meridional flux is generally poleward and intensified in the midlati-
tude storm tracks.

• In contrast to the zonal flux, the transient eddy flux is a major component of
the total meridional flux.

• The flux associated with the mean circulation is strongly equatorward in the
tropics in the annual mean. The upper branches of the Hadley cells contribute
little.

8.2.3 Fig. 12.12: Seasonality of meridional water vapor fluxes

• Strong seasonal cycle associated with the mean meridional circulation in the
tropics. There is a much smaller seasonal cycle in the midlatitudes, which are
dominated by the transient flux.

• In long term, atmospheric fluxes must be balanced by opposite flows in the
oceans and rivers.

8.2.4 Fig. 12.14: Vertical flux of water vapor (and condensate)

• The flux associated with the mean meridional circulation is upward in the as-
cending branch of the Hadley cell and downward in the subtropics (as expected).

• Stationary eddies transport water vapor upwards (as do transient eddies – see
next plot).

• The total and transient fluxes include condensate transport (calculated as a
residual – and the transient fluxes include convection).

• Eddy and mean fluxes oppose each other in the subtropics

8.2.5 Streamfunction for water vapor and condensate

Neglecting horizontal transport of condensate and taking the time and zonal mean,

1

R cosφ

∂

∂φ

(
[qv] cosφ

)
+

∂

∂p

[
qω + qcωc

]
= 0
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8. Hydrological cycle

whence we define a streamfunction ψq through the relations

∂ψq
∂p

=
2πR

g
cosφ[qv]

− 1

R

∂ψq
∂φ

=
2πR

g
cosφ

[
qω + qcωc

]

Contours of ψq are plotted in Fig. 12.18:

• Water vapor primarily circulates in the lower troposphere

• Streamlines leaving the surface ⇒ E > P

• Streamlines entering the surface ⇒ P > E

• Low-level circulations in the tropics feed the ITCZ (although some water leaving
the winter subtropics is fluxed to the summer midlatitudes).

8.2.6 Distribution of E − P = ∇ ·Q
Fig. 12.16: Zonal-mean E − P

• Net divergence in subtropics, intensifies in winter (due to cross-equatorial Hadley
cells)

• Net convergence in equatorial and mid- to high latitudes.

ERA40: E − P vs. lat. and lon.

See Fig. 8.1

• Convergence and divergence generally stronger over oceans than land.

• Convergence over land often associated with drainage basins of large rivers.

• Divergence in subtropics coincide with arid regions, e.g. Sahara, Gobi (China),
Kalahari (southern region of Africa), Arabian, Great Australian, etc.

• Matching patterns in surface salinity in ocean

• Sometimes divergence over land – either implies error or surface and under-
ground flow.

8.2.7 Fig. 12.7: Streamlines vs. lat. and lon. of the water vapor flux

DJF shown. In JJA get bigger flux from gulf into North America.
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8.3. Estimates of precipitation and evaporation rates

ERA40 atlas

E-P (mm/day)

Figure 8.1: Annual mean evaporation minus precipitation in mm / day. Source:
ERA-40 atlas.

8.3 Estimates of precipitation and evaporation rates

8.3.1 Precipitation

• Estimation of precipitation globally is a difficult task.

• Precipitation is intermittent in space and time (little correlation for distances
> 100 km).

• In situ measurement of precip. over ocean is difficult. Coastal and island mea-
surements are not very representative, and different rates are generally observed
when ship data are available. (Ships and buoys gives estimates).

Figure 4 from Béranger et al. (2006) shows a comparison of different datasets
over the ocean. Note, although the maximum is located at the same latitude, there
is a fairly big range of values, with the two reanalysis estimates giving the highest
(ERA15) and one of the lowest values (NCEP), a discrepancy of ∼30%.

Reanalysis does not assimilate precipitation observations (although, e.g. ERA40
does assimilate water vapor measurements from satellites). Thus, precipitation in re-
analysis can be viewed as the model forecast from the previous analysis time 6 hours
earlier. This will depend on the convective and large-scale precipitation parameteri-
zations used in the model.

Figure 2 from Andersson et al. (2005) shows that in the ECMWF operational
forecasting system the initial tropical precipitation is too large, reducing to a different
value after 12-24 hours. This leads to too low a relative humidity after day 1 and day
5 compared with a verifying analysis, and the additional latent heating leads to too
strong a Hadley cell after day 1.
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8. Hydrological cycle

The alternative is to use satellite measurements of microwave and infrared emis-
sions to infer rain rates. The data are calibrated (e.g. trained using a neural net)
against ground-based radar and gauge measurements. Note that these methods of-
ten do not measure precipitation directly – passive microwave can be emission based
(cloud liquid water) or scattering (scattering of surface emissions by large ice par-
ticles). IR brightness temperatures are related to the existence and top-altitude of
clouds. In general these physical properties should be regarded as only statistically
related to the precipitation rate.

Fig. 1 of Adler et al. (2003) shows the GPCP algorithm, and Fig. 4 shows the
long-term mean. GPCP is a merged product of several types of satellite data and
in-situ observations. The figure from OCW compares the zonal-mean of GPCP with
older (ground and ship based) estimates – there is reasonable agreement. Figs. 14
and 15 from Adler et al. (2003) compare the GPCP final product with independent
rain-gauge measurements. For the comparison with Pacific atolls there is a large bias,
but this may also be due to the non-representativeness of atoll precip. for a GPCP
grid box.

8.3.2 Evaporation

Direct measurements of evaporation are sparse and insufficient to create a climatology
(using pans to measure evaporation is also difficult). Over ocean, evaporation rates
are estimated using a bulk aerodynamic formalism. (Similar formulae can be written
for the surface sensible heat and momentum fluxes).

Bulk aerodynamic formula for evaporation

E = −ρCw|v(z)|
(
q(z)− q(0)

)

with Cw an empirical transfer coefficient that depends on wind (shear), static stability.

• z is often taken as 10 m.

• In calm conditions (|v(z)| small), often add a ‘gustiness factor’ to |v(z)| to avoid
Cw becoming large.

• Can try to estimate Cw based on theory of boundary layer turbulence.

• Often −
(
q(z) − q(0)

)
' (1 − r)qs(0), so that near-surface relative humidity is

very important (and tightly constrained by the surface energy budget).

• Over land this only gives an estimate of the potential evapotranspiration. The
actual rate depends on soil moisture, plant activity, etc. ⇒ need to rely on
more complicated models (e.g. a land model or a reanalysis) or estimate from
the energy budget at the surface, or measure runoff and precip., etc.
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8.4. Note on surface energy budget

Estimate of evaporation rate from ERA40 reanalysis

THIS FIGURE IS MISSING!
Shown for the long-term mean vs. latitude and longitude. The highest values

occur over the subtropical oceans. The effects of ocean boundary currents are also
evident. The zonal-mean (P&O Fig. 7.27) reveals a local minimum near the equator,
and greater rates in winter than summer. Both these features are related to the
magnitudes of surface winds.

8.4 Note on surface energy budget

F sfc
rad = F ↑SH + LcE + F ↓G + LM

(
Ms − Fs

)

where

F ↑SH = −ρcpCH |v(z)|
(
θ(z)− θ(0)

)

F sfc
rad = F ↓SW (1− Asfc)− εσT 4

sfc + F ↓LW

and we have defined

F ↓G = heat flux into subsurface layers

LMMs = energy used in melting snow or ice

LMFs = energy released by freezing water

FSH and E are strongly related to the surface winds, boundary layer stability and
the land/ocean – air temperature difference.

8.5 Importance of upper-tropospheric water vapor

Radiative effects of water vapor provide a motivation to study the amount of water
vapor in the upper troposphere (even though there is relatively little there).

Consider the change in OLR (R) for a given change in temperature δTk in each
layer of the atmosphere (keeping clouds, aerosols, etc. fixed)

δR =
N∑

k=1

( ∂R
∂Tk

δTk +
∂R

∂ek
δek

)

where k indexes 100 hPa thick layers.
If constant relative humidity is assumed, then

δe = H
des
dT

δT

We therefore write

δR =
N∑

k=1

(
Qk
T +Qk

e

)
δT
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8. Hydrological cycle

with

Qk
T =

∂R

∂Tk
Qk
e =

∂R

∂ek
H
des
dT

following Held and Soden (2000).
This allows us to compare water vapor and temperature effects in the same units

(W/m2/K). For reference, a doubling of CO2 ' 4 W/m2.
Held and Soden (2000) fig. 9 shows Qk

e,T based on temperature and humidity from
ECMWF and cloud data from the International Satellite Cloud Climatology Project
(ISCCP). Clouds are important – for clear sky conditions, low level temperatures
are important in Qk

T , but upper levels matter in cloudy conditions. Similarly, Qk
e

maximizes in the deep tropics if clouds are omitted. Mid- and upper-level water
vapor is most important: this makes sense as emission near water vapor spectral
lines comes primarily from upper levels. Upper levels also have a stronger greenhouse
effect because they are colder.

Fig. 8 from Held and Soden (2000) shows some processes that may be important
for the water vapor distribution. The phase changes of water mean that particular
approaches are needed to understand the maintenance and control of the water vapor
distribution. An example is offered in the following section.

8.6 Last-saturation analysis of the mean relative humidity field

Assume that evaporation of condensate is unimportant, and that the relative humidity
is set to one following condensation. Then, when condensation is not occurring,

dq

dt
= e− c = 0

(also neglecting diffusion). And when condensation occurs q = qs.
Since q is conserved by an air parcel since its last saturation, then

q = qs
(
Tlast sat., plast sat.

)

' εe(Tlast sat.)

plast sat.

The relative humidity is given by

r =
e

es
' q

qs
'
qs
(
Tlast sat., plast sat.

)

qs(T, p)

or using an approximate form for qs

r ' es(Tlast sat.)p

es(T )plast sat.

' p

plast sat.

exp

(
− εL

Rv

( 1

Tlast sat.

− 1

T

))

Thus, relative humidity will be much less than one if the temperature of last
saturation is much lower than the current temperature.

94



8.6. Last-saturation analysis of the mean relative humidity field

Writing Tlast sat. = T −∆T , we get

exp

(
− L

Rv

1

T

( T

T −∆T
− 1
))

= exp

(
− L

RvT

( 1

1− ∆T
T

− 1
))

= exp
(
− L

RvT 2
∆T
)

so that

r ' p

plast sat.

exp
(
− L

RvT 2
∆T
)

For a uniform global warming and no change in the distribution of where last
saturation occurs, we find that relative humidity doesn’t change as much as saturation
vapor pressure:

δr

r
=

2Lv
RvT 3

∆TδT

δes
es

=
Lv
RvT 2

δT

δr

r

es
δes

=
2∆T

T
� 1

Some air parcels have not been saturated since they last left the boundary layer.

q = qboundary layer

Galewsky et al. (2005) (and others) exploit this property to determine the controls
on free-tropospheric relative humidity.

Divide global domain into sub-domains Di, i = 1, ..., N , and define corresponding
tracers Ti(φ, p, λ). The domains typically contain many grid-cells.

1. If saturation occurs in a grid cell we set

Ti(φ, p, λ) = 1 and Tj(φ, p, λ) = 0

where the grid cell is in Di and j = 1, ..., N excluding j = i.

2. Otherwise advect tracers with vertical and horizontal winds.

3. If all air in a given grid-cell was saturated at least once then

N∑

i=1

Ti = 1

This last point is not true since some air parcels not saturated since they left the
surface. Define ‘source tracer’ S. In layer near surface, S = q, Ti = 0.

Then, if have steady axisymmetric fields

q(φ, p) '
N∑

i=1

Ti(φ, p)qsi + S(φ, p)

95



8. Hydrological cycle

This is accurate so long as the sub-domains are not very large. (qsi is an average of
qs over the sub-domain).

For the general unsteady and asymmetric case replace all fields and tracers with
their zonal and time means – introduces an error, but can check accuracy of recon-
struction a posteori. (Galewski et al. do some further refinements of approach to
improve accuracy).

Interpretation of Ti: probability that air in grid cell was last saturated in sub-
domain Di (mixing and averaging mean each grid cell has contributions of air from
many trajectories).

First apply to idealized GCM with dry dynamics and a moisture tracer that is
advected and reset to saturation whenever advection would otherwise cause super-
saturation. Evaporation is prescribed, no latent heating.

Fig. 2 shows zonal mean relative humidity, θ and Eulerian mean meridional
streamfunction.

Fig. 3 shows Ti for 28 sub-domains. The sub-domains are evident as the rect-
angular areas with largest values in each case (the grid boxes most likely to be last
saturated in a given sub-domain are in that sub-domain).

Interpretation:

• Air reaches saturation in adiabatic ascent.

• Deep tropical air remains saturated throughout its ascent.

• Descending air in subtropics last saturated at higher levels, but often swept
poleward and upwards by midlatitude eddies which bring the air to saturation.
This is made clear by the plumes along mean-isentropic surfaces.

Fig. 4 shows the pdf for location of last saturation for a reference point in the
subtropics at low levels. The value in each sub-domain i are the value of Ti at the
reference point. Last saturation was generally higher and poleward along isentropic
surfaces (with a small contribution from cross-isentropic transport, although this
analysis neglects the contribution of the source traces).

Fig. 5 shows the temperature at last saturation. This differs from the dewpoint
depression as p 6= plast sat. and because of the source tracer. (The dewpoint is the
temperature at which saturation is reached under isobaric cooling).

Fig. 7 shows the reconstruction of relative humidity is reasonably accurate.
The approach was also applied to observations using NCEP winds and tempera-

tures and the MATCH (Model of Atmospheric Transport and Chemistry) for tracers
and water vapor. MATCH’s convective parameterization does not remove tracers
during convection.

Assume saturation when relative humidity reaches 90%.
Fig. 9 shows the MATCH mean relative humidity and the reconstruction. Both

have a minimum on subtropics at lower levels than in ERA40. The poor reconstruc-
tion at upper levels relates to not allowing convection to rain out water vapor.

Figs. 10 and 12 emphasize the role isentropic transports in setting subtropical
relative humidity.
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8.7. Water vapor budget in isentropic coordinates

Fig. 11 shows the relative contributions of the isentropic extratropical path and
the tropical subsidence path at 633 hPa and vs. lat. and lon.

8.7 Water vapor budget in isentropic coordinates

A different perspective on subtropical water vapor comes from analysis of the water
vapor budget on dry isentropes in ERA40 reanalysis data. (see Schneider et al., 2006).

At the location of the minimum of relative humidity in the subtropics (Fig. 2),
there is large isentropic eddy flux of water vapor from the tropics to the extratropics,
but its divergence is small, and the main balance is between subsidence drying and
subgrid (convective) moistening (the latter is only from certain longitudes) (Fig. 8).
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9 Angular momentum of the atmosphere

9.1 Conservation of angular momentum

Consider a particle at position r in an interial frame. Angular momentum of the
particle is defined as

M = r × c

and when acted on by a force F , evolves according to

dM

dt
= r × F

where r × F is the torque.
Let n̂ be the unit vector along the axis of rotation of the Earth, so that a parcel

rotating with the Earth has velocity Ω(n̂×r), and its total angular momentum about
the axis of rotation is

M = r ×
(

Ω
(
n̂× r

)
+ c
)

(here r is the vector from the axis of rotation to the particle).
The component in the direction of n̂ is M · n̂, which we write as

M ≡M · n̂ = Ωr2 cos2 φ+ ur cosφ

where u = r cosφλ̇ and r, φ, λ are the usual spherical coordinates. Note that

|r| = r cosφ 6= r

We make the thin-shell approximation

r = R + r′ r′ � R

(since R = 6400 km and r′ ≤ 12 km), giving

M = ΩR2 cos2 φ+ uR cosφ

where the first term is the planetary angular momentum MΩ, and the second term is
the relative angular momentum Mr.

In the absence of forces
dM

dt
= 0
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9. Angular momentum of the atmosphere

As an air parcel moves away from the equator, φ changes and u must change (in
the absence of forces). Since cosφ decreases, u must increase.

For example, if a parcel has u = 0 at the equator, then

M = ΩR2

which must remain constant as φ changes, thus

M = ΩR2 = ΩR2 cos2 φ+ uR cosφ

⇒ ΩR2 sin2 φ = uR cosφ

⇒ u = ΩR tanφ sinφ

9.2 Variations in atmospheric angular momentum

The total relative angular momentum of the atmosphere is

M̃r =

∫
Mrdm =

∫
uR cosφdm

This varies seasonally and on longer and shorter timescales. See Peixoto and Oort,
Fig. 11.2.

The seasonal cycle of the zonal wind is a little greater in the N.H. than the S.H.,
so that M̃r is greater in DJF than JJA. Since the angular momentum of the Earth
system is conserved, there must be a corresponding change in Ω. This implies that
the length of the sidereal day (and solar day)1 must vary, as shown in Fig. 11.2 of
P&O.

If all parts of the Earth’s interior rotate at some angular velocity and if the density
of the Earth were constant (though note iron denser than rock, which is denser than
water, so actually core denser than crust etc.),

M̃Ω =

∫
Ωr2 cos2 φdm =

∫
Ωρer

4 cos3 φdrdφdλ

since the mass element is
dm = ρedrrdφr cosφdλ

Thus

M̃Ω =
2

5
MeR

2Ω ∼ 6× 1033 kg m2 s−1

where Me is the mass of the earth. (We could also write MΩ = IΩ with the moment
of interia I =

∫
r2 cos2 φdm )

We used ∫
r2 cosφdrdφdλ =

R3

3
2π
[

sinφ
]π/2
−π/2 =

4πR3

3
1The solar day is the time it takes for the sun to return to the same point in the sky, and is

24 hours. The sidereal day is measured against the fixed stars and is roughly 23 hours, 56 minutes
(there is one less solar day per year). The Earth’s rotation rate is Ω = 2π

1 sidereal day

100



9.3. Surface stress and mountain torque

and
∫
r4 cos3 φdrdφdλ =

R5

5
2π

∫ π/2

−π/2
dφ cos3 φ

=
2πR5

5

∫ π/2

−π/2
d(sinφ)

(
1− sin2 φ

)

=
2πR5

5

∫ +1

−1

dx(1− x2)

=
2πR5

5

(
2− 2

3

)

=
8πR5

15

Fig. 11.2 suggests changes in M̃r of 1026 kg m2 s−2. We can work out the
corresponding change in the rotation rate

∆M̃Ω ∼
2

5
MeR

2∆Ω ∼ M̃Ω
∆Ω

Ω
∼ −M̃Ω

∆T

T

where T is the length of day. Thus

∆T ∼ −T ∆M̃r

M̃Ω

∼ −86400
1026

6× 1033
∼ 10−3s

which is what is also shown in Fig. 11.2.

• The secular trend in Fig. 11.2 may be related to changes in rotation of core
relative to the mantle.

• Also would expect a slowing of rotation due to tidal forcing (tidal friction with
the moon).

9.3 Surface stress and mountain torque

Now return to consideration of M in the atmosphere alone:

dM

dt
= −1

ρ

∂p

∂λ
+R cosφF

using n̂ · (r × F ) = R cosφFx and setting Fx = F for convenience (here F is the
frictional force).

Note that
∂u

∂t
= −1

ρ

∂p

∂x
+ ... = − 1

ρR cosφ

∂p

∂λ
+ ...

But

ρF = −
(∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
' −∂τzx

∂z
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9. Angular momentum of the atmosphere

! ! 

!F 

! 
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where !
!

is the stress tensor and thus the x component is 

xx 
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+ 
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z
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#
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because near the earth’s surface where the friction is concentrated, the vertical shears are 

much stronger than the horizontal shears (H ! L). Multiplying through by ! and invoking 

continuity we have 

d(!M) " ! "p 
# a cos$ 

"%
. zx 

= (!M) + & ' (!Mv) = # 
dt "t "( "z 

If we now integrate over the volume of the whole atmosphere, 

! " # ($Mv)dV = ! $Mv # ndS = 0 ˆ  (Gauss’ Theorem), 

! 

zx 
dz = "

0 
= surface wind stress, and 

#z 
$ % 

#"

zs 

2! 

"
#p

d$ = 0  if z > zs , where zs(x, y) = height of surface topography,
#$ 0 

but ! 0 if z < zs(x, y). Consider the case where there is a single mountain, as diagrammed, 

with the pressures indicated, at level z1. 

Figure by MIT OCW. 

!
"p

d# = 

#

! 
1 "p

d# + 

2

!
$ "p

d# = p(#1) % p0 + p0 % p(#2 ) = PW'(z1) % PE'(z1) ;
"# "# "#at z = z1 0 #2 
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Figure 9.1: Figure by MIT OCW.

where τ is the stress tensor and we neglect the horizontal components since they are
much smaller than the vertical component in the planetary boundary layer.

ρ
dM

dt
= −∂p

∂λ
−R cosφ

∂τzx
∂z

but

ρ
dM

dt
= ρ

∂M

∂t
+ ρc · ∇M

=
∂

∂t

(
ρM
)

+∇ ·
(
ρMc

)

by continuity.
Integrating over the atmosphere we find

∫
∇ ·
(
ρMc

)
dV =

∫
ρMc · ds = 0

−
∫ ∞

zs

∂τzx
∂z

dz = τ0 = surface wind stress

and ∫ 2π

0

∂p

∂λ
dλ = 0 if z > zs for all λ

where zs = zs(x, y) is the surface topography, but otherwise is non-zero (mountain
torque).

Consider a single mountain, sketched in Fig. 9.1. At height z,

∫
∂p

∂λ
dλ =

∫ λ1

0

∂p

∂λ
dλ+

∫ 2π

λ2

∂p

∂λ
dλ

= p(λ1)− p0 + p0 − p(λ2)

= pW (z)− pE(z)
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9.4. Torques and meridional transport of angular momentum

In general,
∂

∂t

∫
ρMdV = Tm + Tf

where

Tf =

∫
R cosφτ0dA =

∫ π/2

−π/2
dφ

∫ 2π

0

dλR3 cos2 φτ0

using
dA = RdφR cosφdλ

and the mountain torque term is

Tm = −
∫ ∫

∂p

∂λ
dAdz

=

∫ π/2

−π/2
dφR2 cosφ

∫
dz
∑

i

(
P i
E − P i

W

)

where the sum is taken over all mountains reaching a height of z.2

The total angular momentum of the atmosphere changes by mountain torques or
surface frictional stresses. For a stationary system, these must sum to zero. Note τ0

is in opposite direction to surface winds.

9.4 Torques and meridional transport of angular momentum

We next consider the torques and transports at a given latitude.
Writing M = ΩR2 cos2 φ+Mr

dM

dt
= −ΩR22 cosφ sinφ

dφ

dt
+
dMr

dt

= −2Ω sinφR cosφR
dφ

dt
+
dMr

dt

= −fvR cosφ+
dMr

dt

Note we neglected f ′w term. Is this a useful step? See P&O.

dMr

dt
= −1

ρ

∂p

∂λ
+R cosφ

(
fv + F

)

Substituting Mr = R cosφu would give us the usual zonal momentum equation
(including metric and Coriolis terms).

Multiplying by ρ and using continuity,

∂

∂t

(
ρMr

)
+

1

R cosφ

∂

∂λ

(
ρuMr

)
+

1

R cosφ

(
ρv cosφMr

)
+

∂

∂z

(
ρwMr

)

= −∂p
∂λ

+R cosφ
(
ρfv − ∂τzx

∂z

)

2Note that one can avoid sums by working in σ coordinates. ps ∂zs

∂x then enters the problem.
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9. Angular momentum of the atmosphere

The assumption of stationarity implies ∂
∂t

= 0 in the time mean. Now integrate
vertically and use w = 0 at z = zs,∞:

1

R cosφ

∂

∂λ

∫ ∞

zs

ρuMrdz +
1

R cosφ

∂

∂φ

∫ ∞

zs

ρvMrdz

= −
∫ ∞

zs

∂p

∂λ
dz +R cosφf

∫ ∞

zs

ρvdz +R cosφτ0

Integrate zonally, using u = 0 at the side of mountains and

∫ 2π

0

dλ

∫ ∞

zs

ρvdz = 0

by mass conservation. (Thus the Coriolis term has no effect in the zonal, time and
vertical mean).

1

R cosφ

∂

∂φ

∫ 2π

0

dλ

∫ ∞

zs

ρvMr cosφdz

=

∫ ∞

zs

∑

i

(
piE − piW

)
dz +R cosφ

∫ 2π

0

τ0(λ)dλ

If we set v = 0 for z < zs then

1

R cosφ

∫ p0

0

∂

∂p

(
vMr cosφ

)
dp =

g

2π

∫ ∞

zs

∑

i

(
piE − piW

)
dz +Rg cosφ[τ0]

• Three-way balance between transport, mountain torques and surface frictional
stress.

• Globally, transport term drops out.

9.5 Observed angular momentum transport

The transport term

[vMr] = R cosφ[uv]

= R cosφ
(

[u][v] + [u∗v∗] + [u′v′]
)

is shown in Fig. 11.7 of Peixoto and Oort (1992).
It is quite antisymmetric w.r.t hemisphere, dominated by the transient part,

largest in the upper troposphere, and poleward except at high latitudes (equator-
ward wave breaking).

Vertically averaged, Fig. 11.8 shows the strong seasonal cycle in the mean com-
ponent, and the importance of the stationary component in N.H. winter.
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9.5. Observed angular momentum transport

Fig. 11.12 shows the mountain torque is greatest in the N.H., and contributes a
significant component to the angular momentum balance there. (It is calculated from
ps and zs, and is correlated with usfc.

The left hand side of Fig. 11.12 shows the torque on the atmosphere (calcu-
lated from the divergence of the dynamical transport in the atmosphere assuming
stationarity). The units of torque used are Hadleys:

1 Hadley = 1018 kg m2 s−2

Note that the unresolved component of the mountain drag (due to smaller scale
orography and its generation of vertically propagating gravity waves) is not included
in Fig. 11.12.
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Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF
forecasting system. Bull. Amer. Meteor. Soc., 86:387–402, 2005.

Karine Béranger, Bernard Barnier, Sergei Gulev, and Michel Crépon. Comparing 20
years of precipitation estimates from different sources over the world ocean. Ocean
Dynamics, 56:104–138, 2006.

G. J. Boer. Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110(12):
1801–1820, 12 1982.

Jule G. Charney. Geostrophic turbulence. J. Atm. Sci., 28(6):1087–1095, 9 1971.

Arnt Eliassen and Enok Palm. On the transfer of energy in stationary mountain
waves. Geofysiske Publikasjoner, 22(3):1–23, 1961.

Kerry Emanuel. Atmospheric Convection. Oxford University Press, 1994.

Joseph Galewsky, Adam Sobel, and Isaac Held. Diagnosis of subtropical humidity
dynamics using tracers of last saturation. J. Atm. Sci., 62:3353–3367, 2005.

Dennis L. Hartmann. Global Physical Climatology, volume 56 of International Geo-
physics Series. Academic Press, San Diego, 1994.

Isaac M. Held and Brian J. Soden. Water vapor feedback and global warming. Ann.
Rev. Energy Environ., 25:441–475, 2000.

M. N. Juckes. The static stability of the midlatitude troposphere: The relevance of
moisture. J. Atm. Sci., 57:3050–3057, 2000.

107



Bibliography

John N. Koshyk and Kevin Hamilton. The horizontal kinetic energy spectrum
and spectral budget simulated by a high-resolution troposphere–stratosphere–
mesosphere GCM. J. Atm. Sci., 58:329–348, 2001.

L. Li, A.P. Ingersoll, X. Jiang, D. Feldman, and Y.L. Yung. Lorenz energy cycle of the
global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34(L16813),
2007.

Edward N. Lorenz. Available potential energy and the maintenance of the general
circulation. Tellus, 7:271–281, 1955.

Edward N. Lorenz. Available energy and the maintenance of a moist circulation.
Tellus, 30:15–31, 1978.

Edward N. Lorenz. Numerical evalution of moist available energy. Tellus, 31:230–235,
1979.

Edward N. Lorenz. A history of prevailing ideas about the general circulation of the
atmosphere. Bull. Amer. Meteor. Soc., 64(7):730–734, 1983.

Abraham H. Oort and Jose P. Peixoto. Global angular momentum and energy balance
requirements from observations. Adv. Geophys., 25:355–490, 1983.

Olivier Pauluis, Arnaud Czaja, and Robert Korty. The global atmospheric circulation
on moist isentropes. Science, 321(5892):1075–1078, 8 2008.

Jose P. Peixoto and Abraham H. Oort. Physics of Climate. Springer-Verlag, New
York, 1992.

R. Alan Plumb. A new look at the energy cycle. J. Atm. Sci., 40:1669–1688, 1983.

Tapio Schneider. The tropopause and the thermal stratification in the extratropics
of a dry atmosphere. J. Atm. Sci., 61(12):1317–1340, 6 2004.

Tapio Schneider. Self-organization of atmospheric macroturbulence into critical states
of weak nonlinear eddy-eddy interactions. J. Atm. Sci., 63:1569–1586, June 2006.

Tapio Schneider and Paul A. OGorman. Moist convection and the thermal stratifi-
cation of the extratropical troposphere. J. Atm. Sci., 65(11):3571–3583, 11 2008.

Tapio Schneider, Karen L. Smith, Paul A. O’Gorman, and Christopher C. Walker. A
climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic
coordinates. J. Clim., 19:5918–5933, 2006.

Dian J. Siedel, Qiang Fu, William J. Randel, and Thomas J. Reichler. Widening of
the tropical belt in a changing climate. Nature Geoscience, 1:21–24, 2008.

Martin Steinheimer, Michael Hantel, and Peter Bechtold. Convection in lorenz’s
global energy cycle with the ecmwf model. Tellus A, 60:1001–1022, 2008.

108



Bibliography

Peter H. Stone. Baroclinic adjustment. J. Atm. Sci., 35(4):561–571, April 1978.

Kevin E. Trenberth and Lesley Smith. The mass of the atmosphere: A constraint on
global analyses. J. Clim., 18:864–875, 2005.

Geoffrey K. Vallis. Atmospheric and Oceanic Fluid Dynamics: fundamentals and
large-scale circulation. Cambridge University Press, 2006.

Shuntai Zhou and Peter H. Stone. The role of large-scale eddies in the climate
equilibrium. part ii: Variable static stability. J. Clim., 6(10):1871–1881, 10 1993.

109


