Internal gravity waves1

In most places, and at most times, the atmosphere is stably stratified to unsaturated displacements. Here we consider what happens when a stably stratified fluid is perturbed. These introductory notes cover the simplest case of a Boussinesq fluid.

Boussinesq flow

We begin with the Boussinesq equations:

\[
\begin{align*}
\frac{Du}{Dt} &= -\frac{\partial \phi}{\partial x} \\
\frac{Dv}{Dt} &= -\frac{\partial \phi}{\partial y} \\
\frac{Dw}{Dt} &= -\frac{\partial \phi}{\partial z} + b \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0 \\
\frac{Db}{Dt} &= 0
\end{align*}
\]

where \(u = (u, v, w) \) is the velocity, \(b \) is the buoyancy, \(\phi \) is the perturbation pressure divided by the reference density, and the Lagrangian derivative is \(D/Dt = \partial/\partial t + \mathbf{u} \cdot \nabla \). Note that the third of (1) becomes the equation of hydrostatic balance when \(dw/dt \) is negligible. We will replace this equation by

\[
\alpha \frac{Dw}{Dt} = -\frac{\partial \phi}{\partial z} + b .
\]

The constant \(\alpha \) is a trick: \(\alpha = 1 \), of course, but we shall carry it through the analysis so that we can, after the fact, look at the hydrostatic case by setting \(\alpha = 0 \).

Waves on a motionless basic state

Assume a motionless, stratified, basic state, with \(u_0 = v_0 = w_0 = 0, b_0 = N^2 z \) + constant, \(\phi_0 = \int b_0 \, dz \). \(N^2 > 0 \), so this state is stably stratified. Then we assume there are small-amplitude perturbations to the basic state denoted \(u', v', w', b' \) and \(\phi' \) such that \(b = b_0 + b' \) and similarly for the other variables. The perturbations

1These notes are adapted from notes courtesy of Alan Plumb
approximately satisfy the linearized equations resulting from the neglect of nonlinear terms such as $u'^2 \frac{\partial u'}{\partial x}$ in (1):

\[
\begin{align*}
\frac{\partial u'}{\partial t} &= -\frac{\partial \phi'}{\partial x} \\
\frac{\partial v'}{\partial t} &= -\frac{\partial \phi'}{\partial y} \\
\alpha \frac{\partial w'}{\partial t} &= -\frac{\partial \phi'}{\partial z} + b' \\
\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} &= 0 \\
\frac{\partial b'}{\partial t} + N^2 w' &= 0
\end{align*}
\]

Denoting the real part by Re, look for wavelike solutions of the form

\[
\begin{pmatrix}
u' \\
v' \\
w' \\
\phi' \\
b'
\end{pmatrix} = \text{Re} \begin{pmatrix}
U \\
V \\
W \\
\Phi \\
B
\end{pmatrix} e^{i(kx+ly+mz-\omega t)}
\]

Then

\[
\begin{align*}
\omega U - k\Phi &= 0 \\
\omega V - l\Phi &= 0 \\
\omega \alpha W - m\Phi - iB &= 0 \\
kU + lV + mW &= 0 \\
-i\omega B + N^2 W &= 0
\end{align*}
\]

From the last of these, $iB = N^2 W/\omega$, so the third eq. gives $(\omega \alpha - N^2/\omega) W - m\Phi = 0$. Substitute for U, V, W from the first three equations into the fourth equation to give

\[
\left[\frac{k^2}{\omega} + \frac{l^2}{\omega} + \frac{m^2}{(\omega \alpha - N^2/\omega)} \right] \Phi = 0 ,
\]

and hence

\[
\omega^2 = \frac{N^2 (k^2 + l^2)}{\alpha (k^2 + l^2) + m^2}.
\]

Nonhydrostatic case ($\alpha = 1$) For the general case, $\alpha = 1$, and the dispersion relation is

\[
\omega = \pm N \sqrt{\frac{k^2 + l^2}{k^2 + l^2 + m^2}} \quad (2)
\]
Note that this can be written
\[\omega = \pm N \sin \gamma, \]
where \(\gamma \) is the angle the wavenumber vector \(\mathbf{k} = (k, l, m) \) makes with the vertical. So \(|\omega| \leq N \).

The phase speed in the direction of \(\mathbf{k} \) is given by
\[c = \frac{\omega}{|\mathbf{k}|} \]
and the group velocity is
\[\mathbf{c}_g = \left(\frac{\partial \omega}{\partial k}, \frac{\partial \omega}{\partial l}, \frac{\partial \omega}{\partial m} \right) = \frac{\omega m}{k^2 + l^2 + m^2} \left[\frac{km}{k^2 + l^2 + m^2}, \frac{lm}{k^2 + l^2 + m^2}, -1 \right]. \]

Note:

1. \(\mathbf{c}_g \cdot \mathbf{k} = 0 \) : group propagation is along the phase lines

2. From the continuity eq., \(\mathbf{k} \cdot \mathbf{u}' = 0 \) — the fluid motions are along the phase lines. (Note that this implies no advection of wave properties; e.g., since \(b' \) does not vary along lines of constant phase, \(\mathbf{u}' \cdot \nabla b' = 0 \). Hence the nonlinear advection terms we neglected on the grounds of small amplitude are in fact zero — a monochromatic plane internal gravity wave in a uniform medium is in fact a nonlinear solution to the problem!)

3. Note that point (2) implies that fluid motions are normal to \(\mathbf{k} \). So as \(\gamma \to \pi/2 \), the motions are vertical and \(\omega \to N \), the buoyancy frequency; as \(\gamma \to 0 \), the motions are horizontal (against which the stratification offers no resistance) and \(\omega \to 0 \).

4. Note that if all components of \(\mathbf{k} \) are real, \(\omega \leq N \): disturbances with \(\omega > N \) cannot propagate.

5. \((c_g)_x = m^2 k^2 c_x / [(k^2 + l^2 + m^2)(k^2 + l^2)] \), so the \(x \) components of phase and group velocities are in the same direction. Similarly, the \(y \) component. But \((c_g)_z = -m^2 c_z / (k^2 + l^2 + m^2) \) — the vertical components of group and phase velocities have opposite signs.

So an upward (and rightward) propagating wave looks as shown in the following figure:
From a localized source oscillating with a single frequency ω, the waves form rays (the “St Andrews’ cross”) at angles $\gamma = \sin^{-1}(\omega/N)$ to the horizontal, with the phase propagation across the rays:

Hydrostatic case ($\alpha = 0$) When $\alpha = 0$, the dispersion relation becomes

$$\omega = \pm \frac{N}{m} \sqrt{k^2 + l^2} = \pm N \tan \gamma$$

There is no longer any restriction $\omega \leq N$, so the hydrostatic approximation is not valid for high frequency waves for which this approximation predicts $\omega \gtrsim N$, but it should be good for $\gamma \ll 1$ ($\omega \ll N$). Equivalently, it requires $k^2 + l^2 \ll m^2$, i.e., vertical scales much less than horizontal scales.